
A Summary of Memory-based Parameter
Adaptation

Jordyn Walton, Jason Schneider, Zahraa Abbas, Andrew Na

November 6, 2018

This is a summary based on the paper, Memory-based Parameter Adap-
tation by Sprechmann et al.[1]

Introduction

The paper generalizes some approaches in language modelling that seek to
overcome some of the shortcomings of neural networks including the phe-
nomenon of catastrophic forgetting using memory-based adaptation. Catas-
trophic forgetting occurs when neural networks perform poorly on old tasks
after they have been trained to perform well on a new task. The paper also
presents experimental results where the model in question is applied to con-
tinual and incremental learning tasks.

Model-based parameter adaptation (MbPA) is based on the theory of
complementary learning systems which states that intelligent agents must
possess two learning systems, one that allows the gradual acquisition of
knowledge and another that allows rapid learning of the specifics of individual
experiences [2]. Similarly, MbPA consists of two components: a parametric
component and a non-parametric component. The parametric component
is the standard neural network which learns slowly (low learning rates) but
generalizes well. The non-parametric component, on the other hand, is a
neural network augmented with an episodic memory that allows storing of
previous experiences and local adaptation of the weights of the parametric
component. The parametric and non-parametric components therefore serve
different purposes during the training and testing phases.

1

Figure 1: Architecture for the MbPA model. Left: Training Usage. Right:
Testing Setting.[1]

Training Phase

The model consists of three components: an embedding network fγ, a mem-
ory M and an output network gθ. The embedding network and the output
network can be thought of as the standard feedforward neural networks for
our purposes, with parameters (weights) γ and θ, respectively. The memory,
denoted by M , stores experiences in the form of key and value pairs {(hi, vi)}
where the keys hi are the outputs of the embedding network fγ(xi) and the
values vi, in the context of classification, are simply the true class labels yi.
Thus, for a given input xj

fγ(xj)→ hj,

yj → vj.

Note that the memory has a fixed size; thus when it is full, the oldest
data is discarded first.

During training, the authors sample of a set of b training examples ran-
domly (ie. mini-batch size b), say {(xb, yb)}b, from the training data that
they input into the embedding network fγ, followed by the output network
gθ. The parameters of the embedding and output networks are updated by
maximizing the likelihood function (equivalently, minimizing the loss func-
tion) of the target values

p(y|x, γ, θ) = gθ(fγ(x)).

The last layer of the output network gθ is a softmax layer, such that
the output can be interpreted as a probability distribution. This process is

2

also known as backpropagation with mini-batch gradient descent. Finally,
the embedded samples {(fγ(xb), yb)}b are stored into the memory. No local
adaptation takes place during this phase.

Testing Phase

During the testing phase, the model will temporarily adapt the weights of
the output network g based on the input x and the contents of the memory,
M , according to

θx = θ + ∆M .

First, x is inputted into the embedding network, q = fγ(x). Based on query
q, a K-nearest neighbours search is conducted. The contextual, C is the
result of this search.

C = {(hk, vk, w(x)
k)}Kk=1

Each of the neighbours has a weighting w
(x)
k attached to it, based on how

close it is to query q. This calculation is based on the kernel function,

kern(h, q) =
1

ε+ ||h− q||22
.

The temporary updates during adaptation are based on maximizing the
weighted average of the log likelihood over the neighbours in C, also known
as the maximum a posteriori over the contextual, C,

max
θx

log p(θx|θ) +
K∑
k=1

w
(x)
k log p(v

(x)
k |h

(x)
k , θx, x). (1)

Note that the first term here acts as regularization that prevents over-
fitting.

Unfortunately, equation (1) does not have a closed form solution. How-
ever, it can be maximized using gradient descent in a fixed number of steps.
Each of these steps is calculated via ∆M ,

∆M(x, θ) = −αM∇θ

K∑
k=1

w
(x)
k log p(v

(x)
k |h

(x)
k , θx, x)

∣∣∣∣
θ

− β(θ − θx),

3

Figure 2: Local fitting on a regression task given a query (blue) and the
context from memory (red).[1]

where β is a hyper-parameter of gradient descent.After a series of gradient
descent steps, the weights of the final output network g are temporarily
adapted and a prediction is made, ŷ. As we can be seen in figure 2, the final
prediction ŷ is similar to a weighted average of the values of the K-nearest
neighbours.

Example: Continual Learning

Continual learning is the process of learning multiple tasks in a sequence
without revisiting a task. The authors consider a permuted MNIST setup,
similar to [3], where each task was given by different permutation of the pix-
els. The authors sequentially trained the MbPA on 20 different permutations
and tested on previously trained tasks.

The model was trained on 10 000 examples per task, using a 2 layer
multi-layer perceptron(MLP) with an ADAM optimizer. The elastic weight
consolidation(EWC) method and regular gradient descent were used to esti-
mate the parameters. A grid search was used to determine the EWC penalty
cost and the local MbPA learning rate was set as β ∈ (0.0, 0.1) and number
of steps (n) was n ∈ [1, 20].

The authors used the pixels as the embedding, i.e. fγ = 1(·), and looked

4

Figure 3: Results on baseline comparisons on permuted MNIST with MbPA
using different memory sizes.[1]

at regions where episodic memory was small. The authors found that through
MbPA only a few gradient steps on carefully selected data from memory is
enough to recover performance. They found that MbPA outperformed MLP
and worked better than EWC in most cases and found that the performance
of MbPA grew with the number of examples stored. They note that the mem-
ory requirements were lower than EWC. The lower memory requirements are
attributed to the fact that EWC stores all task identifiers, whereas MbPA
only stores a few examples. Figure 3 also shows the results of MbPA com-
bined with other methods. It is noted that MbPA combined with EWC gives
the best results.

Example: Incremental Learning

Incremental learning has two steps. First, the model is trained on a subset
of the classes found in the training data. The second step is to give it the
entire training set and see how long it takes for the model to perform well
on the entire set. The purpose of this is to see how quickly the model learns
information about new classes and how likely it is to lose information about
the old ones. The authors used the ImageNet dataset from [4], and the initial
training set contained 500 out of the 1000 classes.

For the first step, they used three models. A parametric model, MbPA,

5

Figure 4: All three models perform similarly on the data they were pre-
trained on. On the new classes, the mixture and parametric models perform
similarly and MbPA performs much better.[1]

and a mixture model. The parametric model they used was Resnet V1 from
[5]. It was used both as the parametric model in MbPA and as a separate
model for testing. The non-parametric model used was the memory as de-
scribed earlier. The memory was created by taking the keys from the second
last layer of the parametric model. The mixture model was a convex combi-
nation of the outputs of the parametric and non-parametric model as shown
in (2).

p(y|q) = λpparam(y|q) + (1− λ)pmem(y|q). (2)

λ was tuned as a hyperparameter. Finally, MbPA was used as the fourth
model with the Resnet V1 parametric model, and the non-parametric model
being identical to the one described above. They were evaluated using their
Top 1 accuracy. That is to say that the class with the highest output value
was taken to be the models prediction for a given data point in the test set.

There was also a test on how well the models perform on unbalanced
datasets. In addition to the previous three, they included a non-parametric
model which was just the memory running without the rest of the network.
Since most real-world datasets have different amounts of data in each class,
a model that could use unbalanced datasets without becoming biased would
have more information available to it for training. The testing here was done

6

similarly to the other incremental learning experiment. The models were
trained on 500 of the 1000 classes until they performed well. They were then
given a dataset containing all of the data from the first 500 classes and only
10% of the data from the other 500 classes. Accuracy was evaluated both
using Top 1 and AUC (area under the curve) accuracy. It was found that
after 0.1 epochs, MbPA and the non-parametric model performed similarly
and much better than the other two by both accuracy metrics. After 1 or 3
epochs, the non-parametric model begins to perform worse than the others
and MbPA continues to perform better.

Conclusion

The MbPA model can successfully overcome several shortcomings associated
with neural networks through its non-parametric, episodic memory. In fact,
many other works in the context of classification and language modelling
among others have successfully used variants of this architecture, where tra-
ditional neural network systems are augmented with memories. The exper-
iments in incremental and continual learning presented in this paper, use
a memory architecture similar to the Differential Neural Dictionary (DND)
used in Neural Episodic Control (NEC) found in [6], though the gradients
from the memory in the MbPA model are not used during training. In conclu-
sion, MbPA presents a natural way to improve the performance of standard
deep networks.

References

[1] Sprechmann. Pablo, Jayakumar. Siddhant, Rae. Jack, Pritzel. Alexander,
Badia. Adria, Uria. Benigno, Vinyals. Oriol, Hassabis. Demis, Pascanu.
Razvan, and Blundell. Charles. Memory-based parameter adaptation.
ICLR, 2018.

[2] Kumaran. Dhushan, Hassabis. Demis, and McClelland. James. What
learning systems do intelligent agents need? Trends in Cognitive Sciences,
2016.

[3] Goodfellow. Ian, Warde-Farley. David, Mirza. Mehdi, Courville. Aaron,
and Bengio. Yohsua. Maxout networks. arXiv preprint, 2013.

7

[4] Russakovsky. Olga, Deng. Jia, Su. Hao, Krause. Jonathan, Satheesh. San-
jeev, Ma. Sean, Huang. Zhiheng, Karpathy. Andrej, Khosla. Aditya, and
Bernstein. Michael. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 2015.

[5] He. Kaiming, Zhang. Xiangyu, Ren. Shaoqing, and Sun. Jian. Deep
residual learning for image recognition. IEEE conference on computer
vision and pattern recognition, 2016.

[6] Pritzel. Alexander, Uria. Benigno, Srinivasan. Sriram, Puigdomenech.
Adria, Vinyals. Oriol, Hassabis. Demis, Wierstra. Daan, and Blundell.
Charles. Neural episodic control. ICML, 2017.

8

