Synthesizing Programs for Images using Reinforced Adversarial Learning (SPIRAL)

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, Oriol Vinyals; Proceedings of the 35th International Conference on Machine Learning, 2018

Presented by: Hadi Nekoei

Motivation

The ability to interpret objects through the tools that created them gives us a richer understanding of the world and is an important aspect of our intelligence.

It is commonly believed that humans exploit simulations to learn this skill (Lake et al., 2017).

https://deepmind.com/blog/learning-to-generate-images/

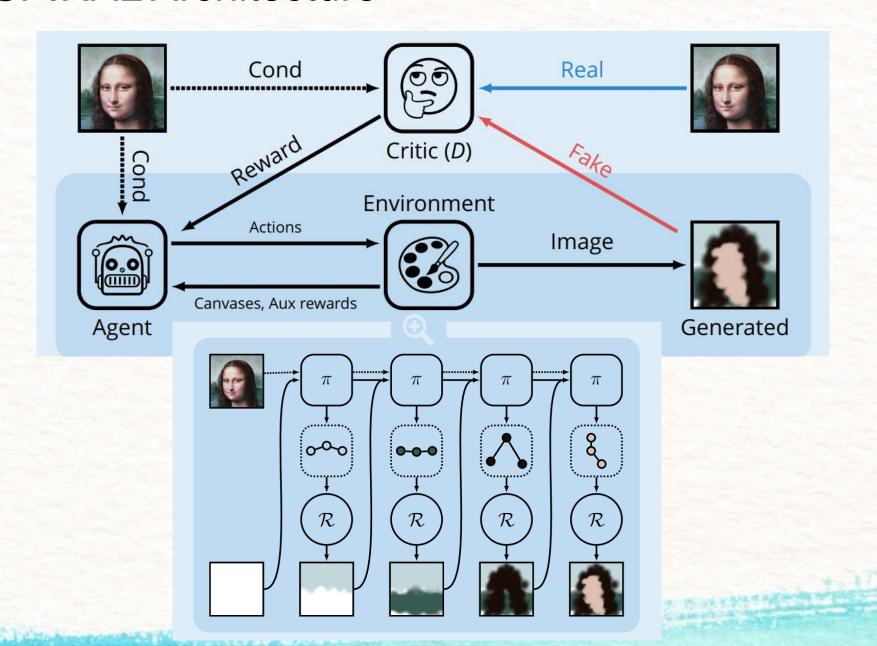
Demo

Synthesizing Programs for Images using Reinforced Adversarial Learning

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, Oriol Vinyals

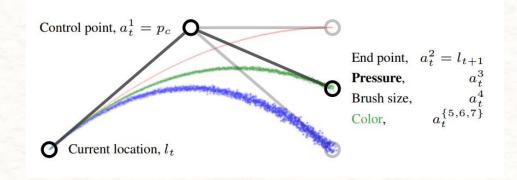
SPIRAL Architecture

SPIRAL Architecture

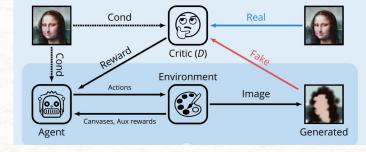


Environments

- An open-source painting library libmypaint
 - For MNIST, OMNIGLOT and CELEBA generation



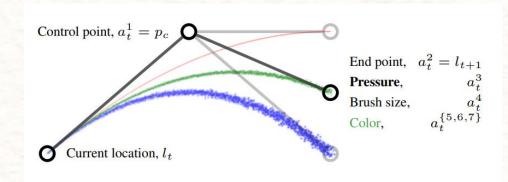
$$a_t = (a_t^1, a_t^2, a_t^3, ..., a_t^8)$$



Cond Critic (D) Real Environment Actions Image Generated

Environments

- An open-source painting library libmypaint
 - For MNIST, OMNIGLOT and CELEBA generation

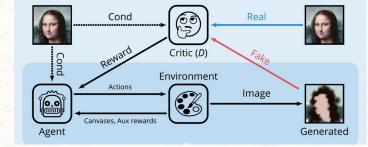


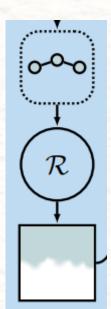
$$a_t = (a_t^1, a_t^2, a_t^3, ..., a_t^8)$$

- MuJoCo-based environment (Todorov et al., 2012)
 - MUJOCO SCENES experiment



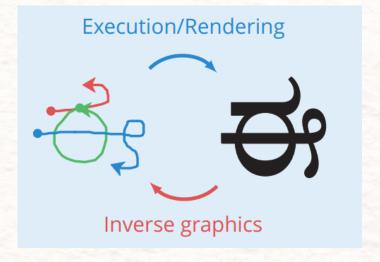
Programs





Modelling data distribution in the space of visual programs (not in the pixel-space)

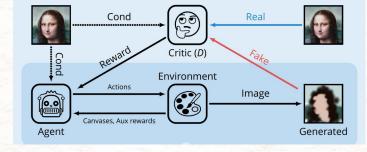
Goal: Finding p_{prog} such that $execute(p_{prog}) \approx p_{data}$

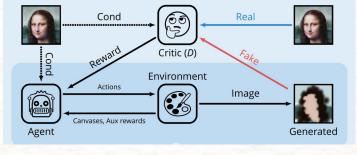


Discriminator Objective:

$$\mathcal{L}_D = -\mathbb{E}_{\mathbf{x} \sim p_d} \left[D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[D(\mathbf{x}) \right] + R.$$

• R is a regularization term





$$\mathcal{L}_D = -\mathbb{E}_{\mathbf{x} \sim p_d} \left[D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[D(\mathbf{x}) \right] + R.$$

- R is a regularization term
- · In the context of this model, optimizing minimax objective form is hard

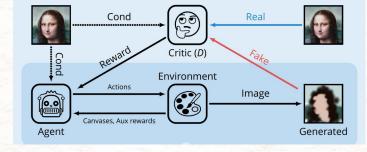
Wasserstein distance (Earth Mover's distance) as a measure of divergence between distributions

$$W(p_r,p_g) = \inf_{\gamma \sim \Pi(p_r,p_g)} \mathbb{E}_{(x,y) \sim \gamma}[\|x-y\|]$$

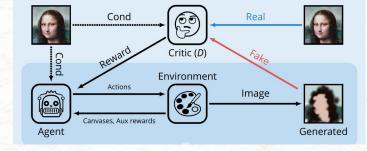
Generator (Policy) Objective:

$$\mathcal{L}_G = -\mathbb{E}_{\mathbf{x} \sim p_g} \left[D(\mathbf{x}) \right]$$

Since the generator is an arbitrary non-differentiable function



Generator (Policy) Objective:



$$\mathcal{L}_G = p_g \left[D(\mathbf{x}) \right]$$

Since the generator is an arbitrary non-differentiable function

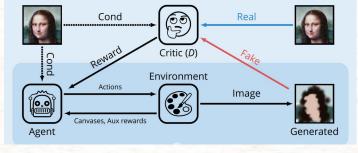
Advantage actor-critic (A2C): maximization of the expected return:

$$\mathcal{L}_G = -\sum_t \log \pi(a_t \mid s_t; \theta) \left[R_t - V^{\pi}(s_t) \right]$$

where V^{π} is an approximation to the value function which is considered to be independent of θ , and $R_t = \sum^N r_t$ is a 1-sample Monte-Carlo estimate of the return.

$$r_t = \begin{cases} 0, & t < N, \\ D(\mathcal{R}(a_1, a_2, \dots, a_N)), & t = N. \end{cases}$$

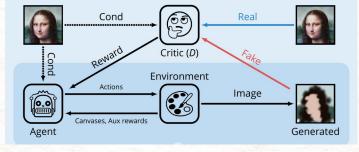
Conditional Generation:



- So far, we have described the case of unconditional generation!
- One might be interested in finding a specific program that generates a given image x_{target}.

$$\mathcal{L}_D = -\mathbb{E}_{\mathbf{x} \sim p_d} \left[D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[D(\mathbf{x}) \right] + R.$$

Conditional Generation:



- So far, we have described the case of unconditional generation!
- One might be interested in finding a specific program that generates a given image x_{target} .

$$\mathcal{L}_D = -D(\mathbf{x}_{\text{target}} \mid \mathbf{x}_{\text{target}}) + \mathbb{E}_{\mathbf{x} \sim p_g} \left[D(\mathbf{x} | \mathbf{x}_{\text{target}}) \right]$$

Distributed Learning

• Actors: Up to 64

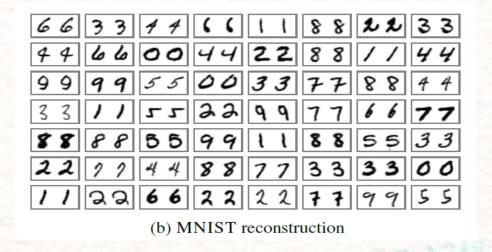
· A policy learner:

discriminator learner::

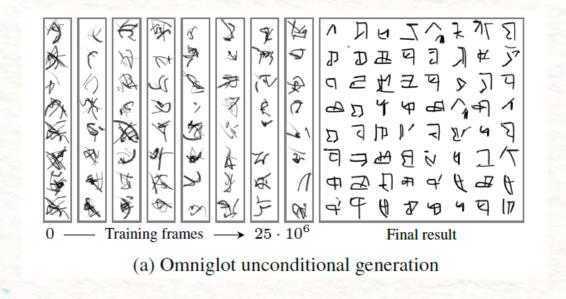


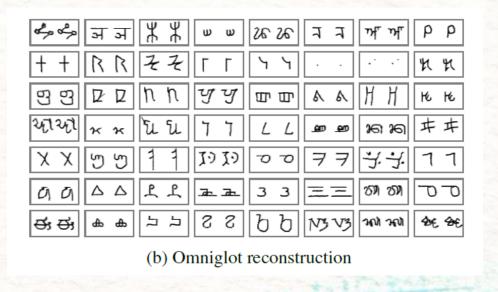
- MNIST (LeCun et al., 1998):
 - It contains 70,000 examples of handwritten digits, of which 10,000 constitute a test set.
 Each example is a 28×28 grayscale image.
 - To encourage the agent to draw a digit in a single continuous motion of the brush, we provide a small negative reward for starting each continuous sequence of strokes.



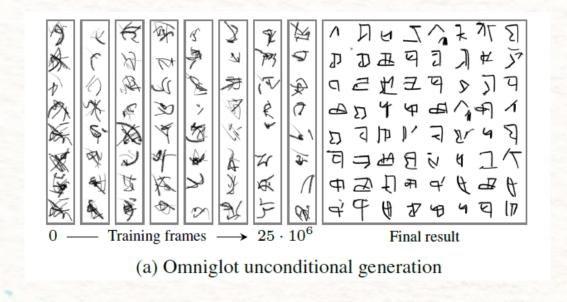


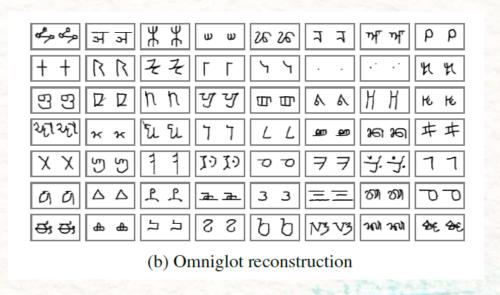
- OMNIGLOT (Lake et al., 2015):
 - Comprises 1623 handwritten characters from 50 alphabets.
 - Compared to MNIST, this dataset introduces three additional challenges:
 - higher data variability



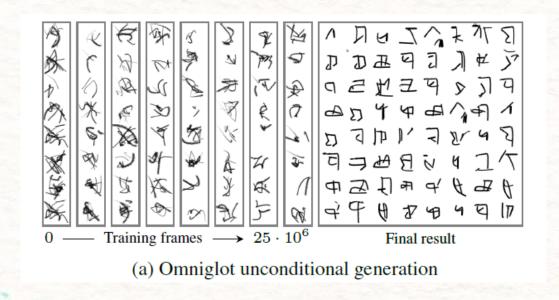


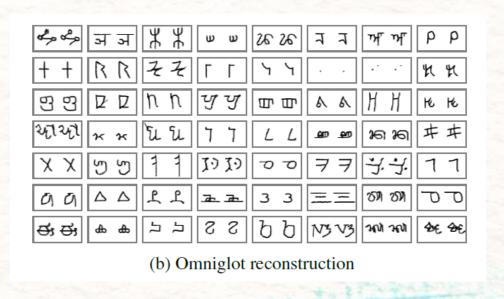
- OMNIGLOT (Lake et al., 2015):
 - Comprises 1623 handwritten characters from 50 alphabets.
 - Compared to MNIST, this dataset introduces three additional challenges:
 - higher data variability
 - higher complexity of symbols (e.g., disjoint subcurves) and





- OMNIGLOT (Lake et al., 2015):
 - Comprises 1623 handwritten characters from 50 alphabets.
 - Compared to MNIST, this dataset introduces three additional challenges:
 - higher data variability
 - higher complexity of symbols (e.g., disjoint subcurves) and
 - fewer (only 20) data points per symbol class.





- CELEBA (Liu et al., 2015):
 - contains over 200,000 color headshots of celebrities with large variation in poses, backgrounds and lighting conditions.
 - The SPIRAL agent reconstructs human faces in 20 strokes.

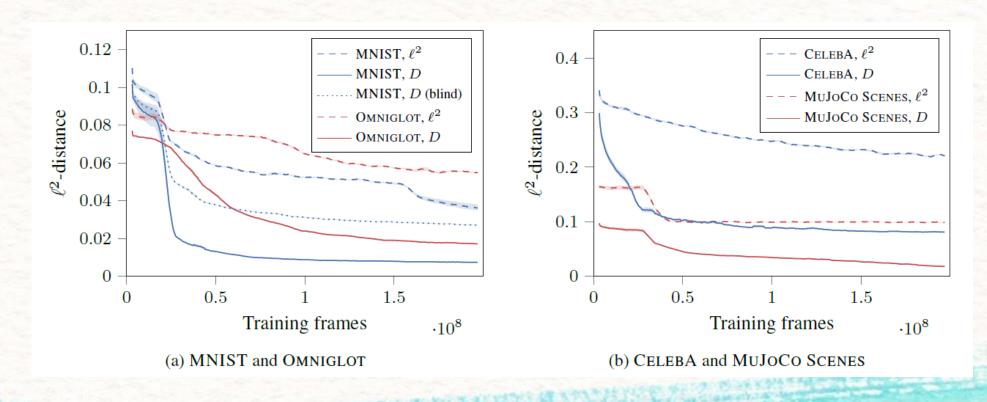
MUJOCO SCENES dataset:

- Consisting of renders of simple 3D primitives (up to 5 objects) scattered around a square platform. The training set is comprised of 50,000 RGB images generated by means of the MuJoCo environment
- Only considering the case of conditional generation

²-distance between reconstructions and ground truth

Based on two kinds of rewards:

- Discriminator score (D)
- $-\ell^2$ distance



Discussion and Critiques:

- Sophisticated search algorithms for policy improvement. For instance, Monte Carlo Tree Search can be used, analogous to AlphaGo Zero (Silver et al., 2017).
- Future work should explore different parameterizations of action spaces. For instance, the use of two arbitrary control points is perhaps not the best way to represent strokes.
- Using a joint image-action discriminator similar to BiGAN/ALI(Donahue et al., 2016; Dumoulin et al., 2016) could result in a more meaningful learning signal, since D will be forced to focus on the semantics of the image.

"Artwork created with artificial intelligence fetches more than \$400K US at major auction" !!!

Thanks for your attention!

Any Questions?

https://www.cbc.ca/news/entertainment/ai-artwork-sells-for-400k-auction-1.4877945

Appendix

Even when two distributions are located in lower dimensional manifolds without overlaps, Wasserstein distance can still provide a meaningful and smooth representation of the distance in-between.

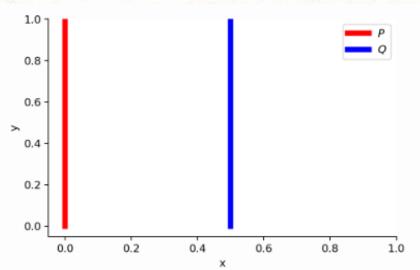


Fig. 8. There is no overlap between P and Q when heta
eq 0 .

When $\theta \neq 0$:

$$\begin{split} D_{KL}(P\|Q) &= \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty \\ D_{KL}(Q\|P) &= \sum_{x=\theta, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty \\ D_{JS}(P,Q) &= \frac{1}{2} (\sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2} + \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2}) = \log 2 \\ W(P,Q) &= |\theta| \end{split}$$

But when $\theta = 0$, two distributions are fully overlapped:

$$D_{KL}(P||Q) = D_{KL}(Q||P) = D_{JS}(P,Q) = 0$$

 $W(P,Q) = 0 = |\theta|$

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan