Learning To Teach

11/6/18

ICLR 2018

By: Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, Tie-Yan Liu

Presented by: Ronald Feng

Overview

- 1. Intuition and Context
- 2. Framework Definition
 - Student Model
 - Teacher Model
- 3. Application to Data Teaching
- 4. Experimental Results
- 5. Critique

Intuition and Context

- Teaching is a fundamental aspect of education systems
 - Self-learning is generally slower
- Current research focus in AI is on the *learner*
- L2T framework provides a <u>conceptual basis</u> for a system of *Teacher* and *Student* within a machine learning setting

L2T

- L2T framework consists of two intelligent agents:
 - 1. Student model: the "learner" in traditional ML algorithms
 - 2. **Teacher model**: goal to maximize speed and/or accuracy of student
- Once trained, teacher model generalizable

Student Model

- Consider the supervised learning setting
- Student model takes input data and supervisor labels
 - \circ Estimate a function, $f_{\omega}(x)$, which optimizes prediction of supervisor labels according to a given loss function L

$$\omega^* = \underset{\omega \in \Omega}{\operatorname{arg\,min}} \sum_{(x,y) \in D} L(y, f_{\omega}(x)) \stackrel{\Delta}{=} \mu(D, L, \Omega).$$

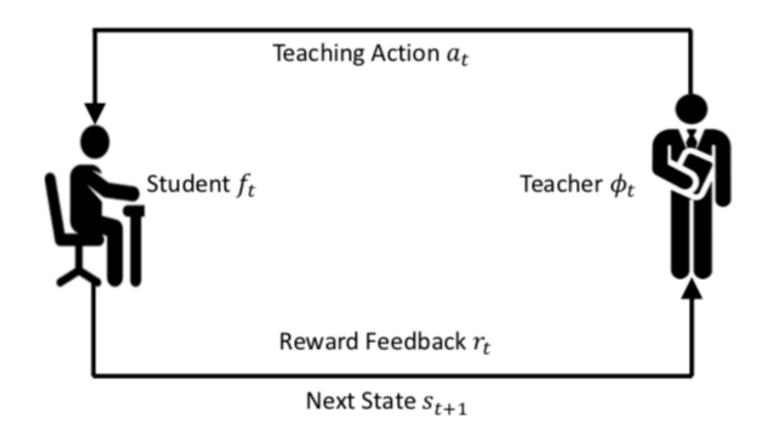
Teacher Model

- Goal is to improve student learning efficiency through modifying the following:
 - 1. D: Input Data
 - 2. *L* : Loss function
 - 3. Ω : Hypothesis Space

$$\min_{D,L,\Omega} \mathcal{M}(\mu(D,L,\Omega), D_{test}).$$

- Data teaching: fixing loss function and hypothesis space
- Teaching model determines input data
- Teaching training approach: Reinforcement Learning
 - Reward is student convergence speed (maximize)
 - + Given accuracy threshold, au
 - \circ Policy is teacher model action (learn parameters θ)

$$\max_{\theta} \sum_{t} r(\mu(\phi_{\theta}(s_t), L, \Omega)),$$



8

• Train teacher model by maximizing expected reward:

$$J(\theta) = E_{\phi_{\theta}(a|s)}[R(s,a)]$$

- Optimizer: REINFORCE (Williams, 1992)
 - Likelihood ratio policy gradient algorithm
 - Estimated empirically:

$$\nabla_{\theta} \approx \sum_{t=1}^{T} \nabla_{\theta} \log \phi(a_t|s_t) v_t$$

- <u>Student model learning rule</u>: Mini-batch Stochastic Gradient Descent
 - Training data arrives in batches, sequentially in random order:

$$\{D_1,\cdots D_t,\dots\}$$

• Each mini-batch consists of *M* training instances

$$D_t = (d_1, \cdots, d_M)$$

Teacher determines which training instances to give students

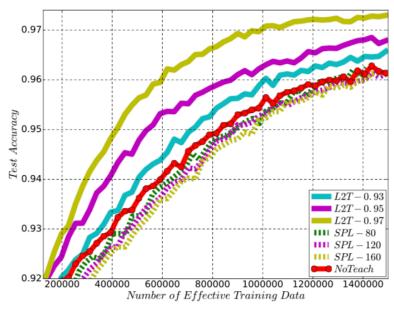
Experimental Results

- Tasks:
 - 1. MNIST: Image Classification
 - 2. CIFAR-10: Image Classification
 - 3. IMDB: Sentiment Classification
- Students:
 - 1. Multilayer Perceptron (MLP)
 - 2. Convoluted Neural Network (CNN): ResNet32 and ResNet110
 - 3. Recurrent Neural Network (RNN)
- Situations:
 - 1. Teaching new student with same model architecture
 - 2. Teaching new student with different model architecture

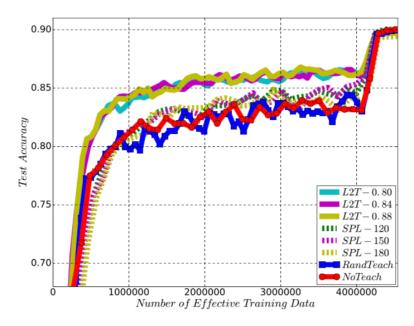
Experimental Results

- Teaching Strategies:
 - \circ L2T
 - NoTeach
 - Self-Paced Learning (SPL): training student by data "hardness"
 - Hardness = Loss Value, Large loss = "hard"
 - * Initially filter out "harder" data, slowly increase threshold
 - RandTeach: Data instances are randomly filtered at each epoch
 - Data-teaching baseline

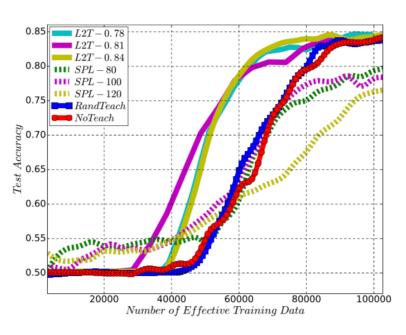
Convergence Speed



(a) MNIST

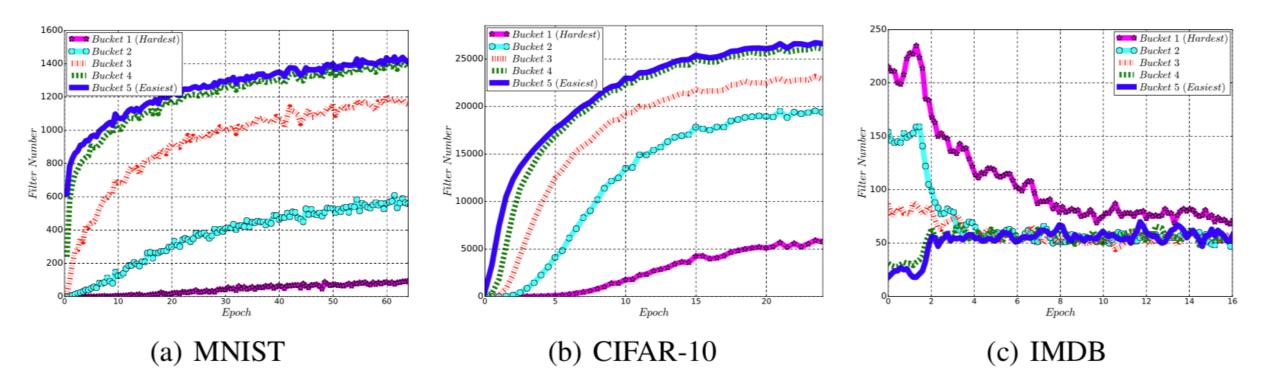


(b) CIFAR-10

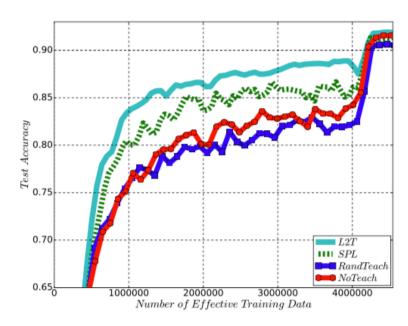


(c) IMDB

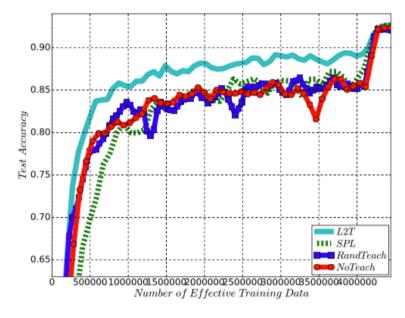
Analysis of Filtered Data



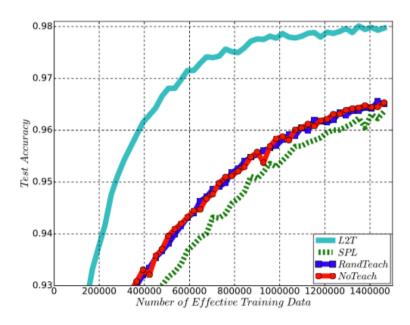
Teaching New Student: Different Architecture



(a) ResNet32 \rightarrow ResNet110 CIFAR-10

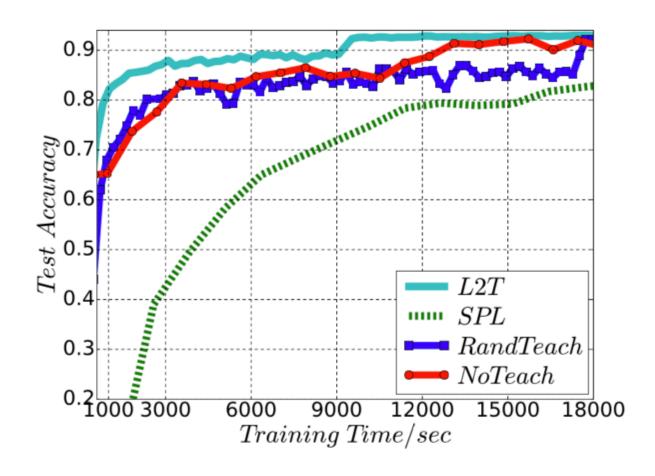


(b) MNIST \rightarrow CIFAR-10 MLP -> ResNet32



(c) CIFAR10→MNIST ResNet32 -> MLP

Wall-Clock Training Time



- Teaching ResNet32 on CIFAR-10
- Fastest training time compared to benchmark teaching strategies
 - Despite needing to train the teacher in tandem

Critique

QUESTIONS

Thank you for your time