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Learning to Teach

Overview
1. Intuition and Context 

2. Framework Definition 

• Student Model 

• Teacher Model 

3. Application to Data Teaching 

4. Experimental Results 

5. Critique
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Learning to Teach

Intuition and Context
• Teaching is a fundamental aspect of education systems  

• Self-learning is generally slower 

• Current research focus in AI is on the learner 

• L2T framework provides a conceptual basis for a system of Teacher and Student 

within a machine learning setting
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Learning to Teach

L2T
• L2T framework consists of two intelligent agents: 

1. Student model: the “learner” in traditional ML algorithms 

2. Teacher model:  goal to maximize speed and/or accuracy of student 

• Once trained, teacher model generalizable
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Learning to Teach

Student Model
• Consider the supervised learning setting 
• Student model takes input data and supervisor labels 

Estimate a function,          , which optimizes prediction of supervisor labels 
according to a given loss function L
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Learning to Teach

Teacher Model
• Goal is to improve student learning efficiency through modifying the following: 

1. D : Input Data 
2.  L : Loss function  
3.  Ω : Hypothesis Space
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Learning to Teach

Application: Data Teaching
• Data teaching: fixing loss function and hypothesis space 
• Teaching model determines input data 
• Teaching training approach: Reinforcement Learning 

Reward is student convergence speed (maximize) 
Given accuracy threshold,  

Policy is teacher model action (learn parameters θ)
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Learning to Teach

Application: Data Teaching
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Learning to Teach

Application: Data Teaching
• Train teacher model by maximizing expected reward: 

• Optimizer: REINFORCE (Williams, 1992) 
Likelihood ratio policy gradient algorithm 
Estimated empirically:
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Learning to Teach

Application: Data Teaching
• Student model learning rule: Mini-batch Stochastic Gradient Descent 

Training data arrives in batches, sequentially in random order: 

Each mini-batch consists of M training instances 

Teacher determines which training instances to give students
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Learning to Teach

Experimental Results
• Tasks: 

1. MNIST: Image Classification 
2. CIFAR-10: Image Classification 
3. IMDB: Sentiment Classification 

• Students: 
1. Multilayer Perceptron (MLP) 
2. Convoluted Neural Network (CNN): ResNet32 and ResNet110 
3. Recurrent Neural Network (RNN) 

• Situations: 
1. Teaching new student with same model architecture 
2. Teaching new student with different model architecture
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Learning to Teach

Experimental Results
• Teaching Strategies: 

L2T 

NoTeach 

Self-Paced Learning (SPL): training student by data “hardness” 

Hardness = Loss Value, Large loss = “hard” 

Initially filter out “harder” data, slowly increase threshold 

RandTeach: Data instances are randomly filtered at each epoch  

Data-teaching baseline
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Convergence Speed



Analysis of Filtered Data



Teaching New Student: Different Architecture

CIFAR-10 MLP -> ResNet32 ResNet32 -> MLP



Wall-Clock Training Time

▪ Teaching ResNet32 on CIFAR-10 

▪ Fastest training time compared to 
benchmark teaching strategies 

Despite needing to train the 
teacher in tandem



Learning to Teach

Critique
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Learning to Teach

Thank you for your time
QUESTIONS
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