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= Significance-Offset Convolutional Neural Network for
Asynchronous time series

= Combining AR models and Neural Networks

= Inspired by standard AR models and gating mechanisms
(used in RNN)

= Focused on time series with multivariate and noisy signals
i.e. financial data

= Time series forecasting problem:

P(Xt+d|Xt, Xi—1, ) = f(Xt, Xi—1, )
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= Financial time series is challenging to
predict due to their low signal-to-noise
ratio and heavy-tailed distributions

= same signal (e.g. price of a stock)
obtained from different sources (e.g.
financial news) asynchronously, each
source may have different bias or noise

(Fig1)

» the traditional econometric models i.e.

AR,VAR,VARMA might not be sufficient.

= combine them with deep neural
networks that can learn highly nonlinear
relationships
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Figure 1. Quotes from four different market participants (sources)
for the same CDS? throughout one day. Each trader displays from
time to time the prices for which he offers to buy (bid) and sell
(ask) the underlying CDS. The filled area marks the difference
between the best sell and buy offers (spread) at each time.
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Stochastic models such as AR, ARIMA and GARCH

= Explain variables rather than improving out-of-sample prediction
= Overfit, poor out-of-sample performance
= Gaussian processes, especially irregular sampled time series
= Combine with econometric models i.e. Gaussian Copula Process Volatility[1]
= 4-layer perceptrons in modeling price change distributions in Limit Order Books[2]

=  WaveNet architecture to several short univariate and bivariate time-series (including
financial ones)[3]

= Autoencoders with a single hidden layer to compress multivariate financial data.[4]

= Neil et al. (2016): Augmentation of LSTM architecture suitable for asynchronous
series[5], which stimulates learning dependencies of different frequencies through
time gate.
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= Gating and weighting mechanisms
= overcome the problem of vanishing gradient
" f@) =c(z)®0o(2)

= f(x): output function, c: nonlinear function of x, ®: an element-
wise(Hadamard) matrix product, o(z) : a sigmoid nonlinearity that
controls the amount of output passed to the next layer

= Appropriate composition of functions may lead to popular recurrent
architecture such as LSTM and GRU.
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4] frequency=1, 12x more datapoints
= Econometrics and machine learning communities +——————+——+++ +frequency=10, information oss
done independently. AR models are not sufficient. (a) drawbacks of fixed sampling frequency
= Gaussian processes follow heavy-tailed s o x
distribution for financial datasets. ; duraon
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= Irregular sampled time series involve highly ; E
nonlinear functions. 2
0
= The dimension of multivariate time series are S T T
often observed separately and asynchronously, fix value  [4.0]7.5]9.0]2.3]7.7]5.0]4.5]5.1
frequency may lead to lose information or enlarge
the dataset (Fig2). 131 1 1
duration S1.7151.3).°9 6 7 11.3
» Treats varying durations as additional (b) representation
feature Figure 2. (a) Fixed sampling frequency and its drawbacks; keep-

ing all available information leads to much more datapoints.
(b) Proposed data representation for the asynchronous series. Con-
secutive observations are stored together as a single value series,

» uses the indicator feature to indicate whether

the value of the observation is in this regardless of which series they belong to; this information, how-
duration or not ever, is stored in indicator features, alongside durations between
’ observations.
= LSTM increases computation complexity. w UNIVERSITY OF
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Model Architecture

= Given multivariate time series(z, )%, C R?
]
= Predict the conditional future values

.
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= The general equation for SOCNN

(Significance-Offset Convolutional
Neural }\\/Iletwork):

Un = Z[F(ng

m=1

mentioned before f(z)

= F,S are neural networks. S is a fully convolutional
network which is composed of convolutional layers
only and called significance network.

= ¢ is anormalized activation function

) ®@a(S(x,

Y

(similar to Gating and weighting mechanisms

=c(z)®0o(z))

» @ is element-wise (Hadamard) matrix

multiplication.
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Model Architecture

= The Eq. of estimator yn can be rewritten as:

e aYa
Significance network Offset network
3 M SEEEEE SEEEER
In =Y Wom ®(0f f(@nm) + ) ® 0(S-ym (x,™)) 3l8lslslels Sl8lelslsl
m:1k } o T T llllllllllll\
Y Convolution Convolution Y Y Y Y Y Y
M olo]oJololo olololo]olo
F(x, ") lat kel BISISIBISG || 1ut emet |ZIZIRIRIE
€ channels ¢ channels
e} te] le][e] [e]le; [e]le] le][e] [e] e}
N - I - "
S . _ [olola] || x v .. — 1)1 sl isits]
Significance-Offset Convolutional Neural (X W, — Dlavers o= ) (X Worr — 1) layers
7 < § %§ﬁ?§§ ~ N
Network (SOCNN) Convolution Convolution Y Y Y Y Y Y
kx1kernel [S15 O ololo 1x1 kernel olololo
- . d, channels [Q]O]O]|O]|O O d, channels O O OJ0JIO|O
= Auxiliary Loss Funct10n° N\ \\/\
ff
I 2
Laum( 7yn = M Z ||0ff Ln— m) Lp—m — || /Weighting >§<
. H, 1 = o(S)® (off +x) _—[O[O[O[C[C0):
= The eq. enforces the separation of temporal dependence, the { %,,,@ ,,,kQ, )
IOfEal Slgmfl(}:lance of Obsefvatllops dSm, agd ’E[hefpred..;ctor.s fLocaIIy connected layer Auxiliary output )
9 (xn-m) that are completely independent of position in fully connected for 7! for auxiliary loss
time. . . . . each of d,; dimensions
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regressor for the target variable through the offset network. \_ ~)
= Significance network provides data-dependent weights for
all regressors and sums them up in an autoregressive W UNIVERSITY OF
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= Three datasets:

= Artificially generated datasets: They generated 4 artificial

series, Xxx~n, where Ke{16,64}. Therefore there is a synchronous and
an asynchronous series for each K value.

= Household electric power consumption dataset: 7 different features
excluding date and time.

= Quotes dataset: 2.1 million quotes from 28 different sources from

different market participants, each quote is characterized by 31
features.

Comparing SOCNN performance with simple CNN, single
and multiplayer LSTM and 25-layer ResNet.
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Training

= Training and validation set: first 80%, sampled by ratio 3:1
Test set: the remaining 20%

= Adam optimizer

= Batch size=128 for artificial and electricity data
Batch size =256 for quotes dataset
batch normalization

= Randomly sampled at the beginning of each epoch
= Dropout and early stopping
= Tensorflow, Keras

= K20s NVIDIA GPU and 8-core Intel Core i7-6700 CPU

w UNIVERSITY OF
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Training Table 1. Configurations of the trained models. f - number of con-

volutional filters/memory cell size in LSTM, ks - kernel size, p

= Grid search over some of the - dropout' rate,'clzp - grad'lent c'llppmg th'reshold, conv - (k x 1)
convolution with kernel size k indicated in the ks column, conv/

hyperparameters - (1 x 1) convolution. Apart from the listed layers, each network
has a single fully connected layer on the top. Kernel sizes (3, 1)

. depth Of Offset subnetwork ((1, 3, 1)) denote alternating kernel sizes 3 and 1 (1,3 and 1) in
successive convolutional layers. We also optimized a parameter

. auxiliary Weight a specific to Phased LSTM, the initialized period, considering two:

settings: [1, 1000] and [.01, 10].

" LeakyReLU aCtlvatlon funCtlon’ Artificial & Electricity Datasets

With leak rate a=0.1: Model layers f ks p clip
. SOCNN 10conv + {1,10}convl  {8,16}  {(3,1),3} 0 {1,.001}
€Z if 2 0 CNN Tconv + 3pool {16,32}  {(3.1).3} {0..5} {1..001}
LeakyReLU LSTM {1,2,3,4} {16,32} . {0,.5}  {1..001}
o Y (a:) — Phased LSTM I {16, 32} - 0 {1,.001}
. ResNet 22conv + 3pool 16 (1,3, 1) {0,.5} {1,.001}

ax otherwise Quotes Dataset

. Model layers f ks p clip

used in all layers except SOCNN Teom+ (L 7jeoml 8 {G.0.3) 5 0

the top layer CNN 7cony + 3pool {16,32}  {(3,1),3} 5 01
LSTM {1,2,3} {32} - 5 000110

. Phased LSTM I {16, 32} - 0 01

= CNN: same number of layers,, ResNet 22conv + 3pool 6 (L3 5 01

same stride, similar kernel size,
max pooling with pool size=2 every
two convolutional layers
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Table 2. Detailed results for all datasets. For each model, we present the average and standard deviation (in parentheses) mean squared
error obtained on the out-of-sample test set. The best results for each dataset are marked by bold font. SOCNNI (SOCNNI+) denote
proposed models with one (10 or 7) offset sub-network layers. For quotes dataset the presented values are averaged mean-squared errors
from 6 separate prediction tasks, normalized according to the error obtained by VAR model.

model VAR CNN ResNet LSTM  Phased LSTM SOCNNI SOCNNI1+

Synchronous 16 0.841 (0.000) 0.154 (0.003) 0.152 (0.001) 0.151(0.001) 0.166 (0.026) 0.152 (0.001) 0.172(0.001)
Synchronous 64 0.364 (0.000) 0.029 (0.001) 0.029 (0.001) 0.028 (0.000) 0.038 (0.004) 0.030 (0.001) 0.032(0.001)
Asynchronous 16  0.577 (0.000)  0.080 (0.032) 0.059 (0.017) 0.038 (0.008)  1.021 (0.090) 0.019 (0.003) 0.026 (0.004)
Asynchronous 64  0.318 (0.000) 0.078 (0.029) 0.087 (0.014)  0.065 (0.020)  0.924 (0.119)  0.035 (0.006) 0.044 (0.118)
Electricity 0.729 (0.005) 0.371(0.005) 0.394 (0.013) 0.461(0.011) 0.744 (0.015) 0.163 (0.010) 0.165 (0.012)
Quotes 1.000 (0.019) 0.897 (0.019) 2.245(0.179) 0.827 (0.024)  0.945 (0.034)  0.387 (0.016) -

P s ey

* SOCNN outperforms in asynchronous artificial, electricity and quotes
datasets.

* For synchronous data, LSTM slightly better, but SOCNN almost has the
same results with LSTM.

« Phased LSTM and ResNet have performed bad on artificial asynchronous
dataset and quotes dataset respectively.

* SOCNN1+ has negligible or negative impact.
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 the higher a improved asynchronous artificial
generated dataset, but has negligible impact on
other datasets.

« In general, SOCNN had significantly lower
variance of the test and validation errors.

Table 3. MSE for different values of « for two artificial datasets.

Q Async 16 async 64

0.0 0.0284 0.0624
0.01 0.0253 0.0434
0.1 0.0172 0.0323
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= Test the robustness of the proposed model SOCNN:

= add noise terms to asynchronous 16 dataset

0.16 — CNN 0.14 w— CNN
LSTM1 LSTM1
w — LSTM2 0.12 — LSTM2
0.12 . SOCNN10+1 SOCNN10+1
significance 0.10 significance
- 0.10 — = |offset|/10 - = |offset)/10
@ 7 2 0.08
= 0.08 | =
).06 0.06
).04 0.04 —
).02 =
0.02 — —
-6 -4 - 0 2 4 6 -6 -4 -2 0 2 4 6
added noise (in standard deviations) added noise (in standard deviations)
(a). train set (b). test set

= SOCNN and single-layer LSTM are most robust compared to
other networks.
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= Significance-Offset Convolutional Neural Network: AR-like
weighting mechanism and convolutional neural network.

= High-noise asynchronous time series

= Achieves outperformance in forecasting several
asynchronous time series

» Extension:
= adding intermediate weighting layers

= not just 1x1 convolutional kernels on the offset sub-network

= econometric datasets

w UNIVERSITY OF
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Critique

= The paper is most likely an application paper, and the proposed new
architecture shows improved performance over baselines in the
asynchronous time series.

BUT
= The quote data cannot be reached, only two datasets available.

= The 'Significance' network was described as critical to the model in paper,
but they did not show how the performance of SOCNN with respect to the
significance network.

= The transform of the original data to asynchronous data is not clearly stated.

= The experiments on the main application are not reproducible because the
data is proprietary.

= The paper didn’t state clearly about the impact and advantage of auxiliary
loss function.
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