Contributions:
1. Our main result is a hypothesis test to evaluate whether pooling data across multiple sites for regression (before or after correcting for site-specific distributional shifts) can improve the estimation (mean squared error) of the relevant coefficients (while permitting an influence from a set of confounding variables). 
2. Show how pooling is can be used even when the features are different across sites. For this they show the L2-consistency rate which supports the use of spare-multi-task Lasso when sparsity patterns are not identical
3. Experimental results showing consistent acceptance power for early Alzheimer’s detection (AD) in humans.

Notes:
1. Minor violations of assumptions can lead to misleading scientific conclusions (Greco et. al. 2013). Domain expertise is a must for this kind of task.
2. Read about Lasso

Regression Problems
Ridge and Lasso regression are powerful techniques generally used for creating parsimonious models in presence of a ‘large’ number of features. Here ‘large’ can typically mean either of two things:
1. Large enough to enhance the tendency of a model to overfit (as low as 10 variables might cause overfitting)
2. Large enough to cause computational challenges. With modern systems, this situation might arise in case of millions or billions of features
Lasso Regression:
LASSO stands for Least Absolute Shrinkage and Selection Operator. 
Lasso regression performs L1 regularization, i.e. it adds a factor of sum of absolute value of coefficients in the optimization objective. Thus, lasso regression optimizes the following:
Objective = RSS + α * (sum of absolute value of coefficients)
1. α = 0: Same coefficients as simple linear regression
2. α = ∞: All coefficients zero (same logic as before)
3. 0 < α < ∞: coefficients between 0 and that of simple linear regression


Hypothesis Testing:
The hypothesis test to evaluate statistical power improvements (e.g., mean squared error) when running a regression model on a pooled dataset is discussed below.
β corresponds to the coefficient vector (i.e., predictor weights), then the regression model is: Eq1
If k denotes the number of sites,  a domain adaptation scheme needs to be applied to account for the distributional shifts between the k different predictors {Xi }ki=1 , and then run a regression model. If the underlying “concept” (i.e., predictors and responses relationship) can be assumed to be the same across the different sites, then it is reasonable to impose the same β for all sites. For example, the influence of CSF protein measurements on cognitive scores of an individual may be invariant to demographics. if the distributional mismatch correction is imperfect, we may define ∆ βi = βi − β∗ where i ∈ {1,...,k} as the residual difference between the site-specific coefficients and the true shared coefficient vector (in the ideal case, we have ∆ βi = 0). 
Therefore, Multi-Site Regression = Eq 2. where for each site i we have yi = Xiβ∗ +Xi∆βi +εi and εi ∼ N (0, σi2) I.I.D. Here, τi is a weighting parameter for each site, if such information is available. 
Bias-Variance Tradeoff:
The bias is error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).
The variance is error from sensitivity to small fluctuations in the training set. High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting).
Separate Regression or Shared Regression ?
Since the underlying relationship between predictors and responses is the same across the different datasets ( from which its pooled), estimates of βi across all k sites are restricted to be the same. Without this constraint, (3) is equivalent to fitting a regression separately on each site. To explore whether this constraint improves estimation, we need to examine MSE. To evaluate whether MSE is reduced, we first need to quantify the change in the bias and variance of (3) compared to (1). 
Case 1: Sharing all βs
ni : sample size of site i
βˆi : regression estimate from a specific site i. 
∆βT length kp vector 
blah 
vlah
Theorem 2.3 implies that the sites, in fact, do not even need to share the full dataset to assess whether pooling will be useful. Instead, the test only requires very high-level statistical information such as ˆi, ⌃ˆi, i and ni for all participating sites – which can be transferred without computational overhead. 
Case 2: Sharing a subset of βs
For example, socio-economic sta- tus may (or may not) have a significant association with a health outcome (response) depending on the country of the study (e.g., due to insurance coverage policies). Unlike in Section 2.1, we now relax the restriction that all coefficients are the same across sites, see Fig. 2. The model in (3) will now include another design matrix of predictors Z 2 Rn⇥q and corresponding coefficients i for each site i, 
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