Dynamic Routing Between Capsules

Nov 29, 2018

Paper by: Sara Sabour, Nicholas Frosst, Geoffrey Hinton

Presented by: Patrick Li

Presentation Architecture

- 1. Problems with CNNs
- 2. Motivation and Intuition
- 3. Network Architecture
 - Capsules
 - Dynamic Routing
- 4. Experimental Results
- 5. Critique

Drawbacks of Convolutional Neural Networks

- Translational invariance; no spatial hierarchies between objects
- "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster."- Hinton
- Overlapping Segments

Drawbacks of Convolutional Neural Networks

CNN Prediction: Kitten CNN Prediction: Guinea Pig

Adversarial Examples

- Demonstrates the lack of robustness in CNNs
- Security threat, and demonstrates that CNNs may not be learning in the way we desire

Motivation for CapsuleNets

- Intuition similar to rendering in computer graphics
- Explicit representation of pose relationships to induce rotational invariance

What are Capsules?

- Vector representations of the state of a detected feature
- Low level capsules communicate to infer information of higher level features

Notation

• Squash

$$\mathbf{v}_j = \frac{||\mathbf{s}||^2}{1 + ||\mathbf{s}||^2} \frac{\mathbf{s}_j}{||\mathbf{s}_j||}$$

Coupling coefficients

$$c_{ij} = \frac{\exp(b_{ij})}{\sum_{k} \exp(b_{ik})}$$

Capsule Operations

$$\mathbf{s}_j = \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}, \hat{\mathbf{u}}_{j|i}, = \mathbf{W}_{ij} \mathbf{u}_i$$

Capsules vs. Neurons

Architecture

- 1. Encoder
- 2. Loss Function
- 3. Decoder
- 4. Dynamic Routing/Training

Encoder

Loss Function

CapsNet Loss Function

calculated for correct DigitCap

calculated for incorrect DigitCaps

1 when correct DigitCap, 0 when incorrect zero loss when correct prediction with probability greater than 0.9, non-zero otherwise 0.5 constant used for numerical stability

1 when incorrect DigitCap, 0 when correct zero loss when incorrect prediction with probability less than 0.1, non-zero otherwise

Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps

Loss Function

Loss Function Value for Correct and Incorrect DigitCap

Decoder

Decoder

Dynamic Routing

Procedure 1 Routing algorithm.

```
1: procedure ROUTING(\hat{\mathbf{u}}_{j|i}, r, l)
2: for all capsule i in layer l and capsule j in layer (l+1): b_{ij} \leftarrow 0.
3: for r iterations do
4: for all capsule i in layer l: \mathbf{c}_i \leftarrow \text{softmax}(\mathbf{b}_i) \triangleright \text{softmax} computes Eq. 3
5: for all capsule j in layer (l+1): \mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}
6: for all capsule j in layer (l+1): \mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j) \triangleright \text{squash} computes Eq. 1
7: for all capsule i in layer i and capsule i and ca
```

Dynamic Routing Intuition

MNIST Experiments

Table 1: CapsNet classification test accuracy. The MNIST average and standard deviation results are reported from 3 trials.

Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}$	-
CapsNet	3	yes	$0.25_{\pm0.005}$	5.2

DigiCaps Representations in MNIST

Scale and thickness	\wp	6	6	6	6	6	6	6	b	6	6
Localized part	0	6	6	6	6	6	6	6	6	6	6
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5
Localized skew	4	4	4	4	4	4	4	4	4	4	4
Width and translation	7	5	3	3	3	3	3	3	3	3	3
Localized part	2	2	2	2	2	2	2	2	2	2	2

MultiMNIST

R:(2,7) L:(2,7)	R:(6,0) L:(6,0)	R:(6,8) L:(6,8)	R:(7,1) L:(7,1)	*R:(5,7) L:(5,0)	*R:(2,3) L:(4,3)	R:(2,8) L:(2,8)	R:P:(2,7) L:(2,8)
4	6	æ	7	₩		2	2
4	6	8	7	5	3	2	2
R:(8,7) L:(8,7)	R:(9,4) L:(9,4)	R:(9,5) L:(9,5)	R:(8, 4) L:(8, 4)	*R:(0,8) L:(1,8)	*R:(1,6) L:(7,6)	R:(4,9) L:(4,9)	R:P:(4, 0) L:(4, 9)
8	4	9	8	F	U	4	4
7	4	5	4	8	6	9	0

Number of Routing Iterations

(b) Log scale of final differences.

Number of Routing Iterations

Overfitting Observed in CIFAR 10 Experiment

Critique

- Novel Approach, will lead to a new wave of research
- Resolves shortcomings of CNNs but currently underwhelming
- May require more domain knowledge of specific problems unlike CNNs
- Incredibly slow training for number of parameters (exponential number of iterations for routing training as number of capsule layers increase)
- Interesting concept which may change the landscape of CV

