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e Dynamic Routing
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 Translational invariance; no spatial hierarchies between objects

« “The pooling operation used in convolutional neural networks is a big mistake and
the fact that it works so well is a disaster.”- Hinton

» Overlapping Segments
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CNN Prediction: Kitten CNN Prediction: Guinea Pig
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« Demonstrates the lack of robustness in CNNs

 Security threat, and demonstrates that CNNs may not be learning in the way we
desire

“panda” “gibbon”
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e
Motivation for GapsuleNets

o Intuition similar to rendering in computer graphics
« Explicit representation of pose relationships to induce rotational invariance
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» Vector representations of the state of a detected feature
« Low level capsules communicate to infer information of higher level features
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Notation
e Squash
o IslP sy
VJ — 5
L+ |[s]]* [Is;]
« Coupling coefficients
exp(bij)

Ciq —
g D1 €xp(bik)

 Capsule Operations

Sj = E cijlyji, 1, = Wi
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1. Encoder

2. Loss Function

3. Decoder

4. Dynamic Routing/Training
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B
Loss Function

CapsNet Loss Function

calculated for correct DigitCap calculated for incorrect DigitCaps

loss tc_ar_m for L2 norm L2 norm
one DigitCap

L. =|T, |max(0, mT — ||VCH) (1 —T¢) lmax(0, ||ve|| — m_)

0.5 constant

zero loss when correct

df
prediction with probability ,,‘:f,,‘ie,iﬁg,
greater than 0.9, non-zero stability

otherwise

Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps
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LosS Function

Loss Function Value for Correct and Incorrect DigitCap

Loss for DigitCap L.
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e
Dynamic Routing

Procedure 1 Routing algorithm.

I: procedure ROUTING(w;;, 7, [)
2 for all capsule ¢ in layer [ and capsule j in layer (I + 1): b;; < 0.
3 for r iterations do
4: for all capsule 7 in layer [: ¢; < softmax(b;) > softmax computes Eq. 3
5: for all capsule j in layer (I +1): sj < >, ¢;;0;y;
6 for all capsule 7 in layer (I + 1): v; < squash(s,) > squash computes Eq. |
7 for all capsule 7 in layer [ and capsule j in layer (I + 1): b;; < b;; + 0;);.v;
return v
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e
Dynamic Routing Intuition

Dynamic routing based on agreement
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e
MNIST Experiments

Table 1: CapsNet classification test accuracy. The MNIST average and standard deviation results are
reported from 3 trials.

Method Routing Reconstruction MNIST (%) MultiMNIST (%)

Baseline - - 0.39 8.1
CapsNet 1 no 0.344+0.032 -
CapsNet 1 yes 0.2940.011 7.5
CapsNet 3 no 0.35+0.036 -
CapsNet 3 yes 0.2510.005 5.2
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S
DigiCaps Representations in MNIST
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MultiMNIST
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Overfitting Observed in CIFAR 10 Experiment

0.03 - 1 Iteration

- 3 Iteration

0.02

0.01

Training Loss

0

\\ \\ \\ \\ \\
\(3@0 19000 @QQQ @00 60000

Training Step

%ﬂ UNIVERSITY OF WATERLOO
FACULTY OF MATHEMATICS



= Novel Approach, will lead to a new wave of research
= Resolves shortcomings of CNNs but currently underwhelming
= May require more domain knowledge of specific problems unlike CNNs

= Incredibly slow training for number of parameters (exponential number of
iterations for routing training as number of capsule layers increase)

= Interesting concept which may change the landscape of CV
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