Dimensionless Numbers: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div id=" | <div id="M"></div> | ||
;'''Mach Number''' | ;'''Mach Number''' | ||
* Definition: <math> M = U/c </math>, where <math> U </math> is the characteristic velocity scale, and <math> c </math> is the speed of sound. | * Definition: <math> M = U/c </math>, where <math> U </math> is the characteristic velocity scale, and <math> c </math> is the speed of sound. | ||
Line 5: | Line 5: | ||
* Analysis: Compressibility effects can be neglected if <math> M < 0.3 </math>. | * Analysis: Compressibility effects can be neglected if <math> M < 0.3 </math>. | ||
<div id=" | <div id="Pr"></div> | ||
;'''Prandtl Number''' | ;'''Prandtl Number''' | ||
* Definition: <math> Pr = \nu/\kappa </math>, where <math> \nu </math> is the [[Glossary#Viscosity|viscosity]], and <math> \kappa </math> is the [[Glossary#Diffusivity|thermal diffusivity]]. | * Definition: <math> Pr = \nu/\kappa </math>, where <math> \nu </math> is the [[Glossary#Viscosity|viscosity]], and <math> \kappa </math> is the [[Glossary#Diffusivity|thermal diffusivity]]. | ||
* Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to heat diffusivity. | * Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to heat diffusivity. | ||
* Analysis: The typical Prandtl number for water is around 7 for water (At 20 degrees Celsius). See also [[# | * Analysis: The typical Prandtl number for water is around 7 for water (At 20 degrees Celsius). See also [[#Sc|Schmidt number]]. | ||
<div id=" | <div id="Re"></div> | ||
;'''Reynolds Number''' | ;'''Reynolds Number''' | ||
* Definition: <math> Re = \frac{UL}{\nu} </math>, where <math> U </math> and <math> L </math> are the characteristic velocity and length scales, and <math> \nu </math> is the [[Glossary#Viscosity|kinematic viscosity]]. | * Definition: <math> Re = \frac{UL}{\nu} </math>, where <math> U </math> and <math> L </math> are the characteristic velocity and length scales, and <math> \nu </math> is the [[Glossary#Viscosity|kinematic viscosity]]. | ||
Line 17: | Line 17: | ||
* Analysis: Small Reynolds numbers are often associated with viscous flows, whereas large Reynolds numbers are typically found in turbulent flows. | * Analysis: Small Reynolds numbers are often associated with viscous flows, whereas large Reynolds numbers are typically found in turbulent flows. | ||
<div id="Richardson Number"></div> | <div id="Rf"></div> | ||
;'''Richardson Number''' | ;'''Richardson Number (flux)''' | ||
* Definition: <math> Rf = \frac{-g\alpha\overline{wT'}}{-\overline{uw}U_z} </math>, where the overlines denote the ensemble averages of variables. | |||
* Interpretation: The ratio of the buoyant destruction of turbulent kinetic energy to the shear production. | |||
* Analysis: It is related to the [[#Ri|gradient Richardson number]] by <math> Ri = \frac{\nu_T}{\kappa_T}Rf </math>, where the ratio <math> \nu_T/\kappa_T </math> is the ''turbulent [[#Pr|Prandtl number]]''. | |||
<div id="Ri"></div> | |||
;'''Richardson Number (gradient)''' | |||
* Definition: <math> Ri = N^2/U_z^2 </math>, where <math> N </math> is the [[Glossary#Buoyancy Frequency|buoyancy frequency]], and <math> U </math> is the background horizontal velocity. | * Definition: <math> Ri = N^2/U_z^2 </math>, where <math> N </math> is the [[Glossary#Buoyancy Frequency|buoyancy frequency]], and <math> U </math> is the background horizontal velocity. | ||
* Interpretation: The ratio between the strength of stratification and velocity shear | * Interpretation: The ratio between the strength of stratification and velocity shear. | ||
* Analysis: A sufficient condition for the flow to be ''linearly stable'' is that the local Richardson number exceed 0.25 throughout the flow. However, <math> Ri < 0.25 </math> does not mean the flow is necessarily unstable (the criterion is not sufficient). When the flow is not a parallel shear flow, the meaning of <math> Ri </math> is not clear. | * Analysis: A sufficient condition for the flow to be ''linearly stable'' is that the local Richardson number exceed 0.25 throughout the flow. However, <math> Ri < 0.25 </math> does not mean the flow is necessarily unstable (the criterion is not sufficient). When the flow is not a parallel shear flow, the meaning of <math> Ri </math> is not clear. | ||
<div id=" | <div id="Ro"></div> | ||
;'''Rossby Number''' | ;'''Rossby Number''' | ||
* Definition: <math> Ro = \frac{U}{fL} </math>, where <math> U </math> is the characteristic velocity, and <math> f </math> is the [[Glossary#Coriolis Frequency|Coriolis frequency]], and <math> L </math> is the characteristic length scale. | * Definition: <math> Ro = \frac{U}{fL} </math>, where <math> U </math> is the characteristic velocity, and <math> f </math> is the [[Glossary#Coriolis Frequency|Coriolis frequency]], and <math> L </math> is the characteristic length scale. | ||
Line 29: | Line 35: | ||
* Analysis: When <math>Ro\ll 1</math>, Coriolis effects dominate and the system approaches [[Glossary#Geostrophic Balance|geostrophic balance]]. | * Analysis: When <math>Ro\ll 1</math>, Coriolis effects dominate and the system approaches [[Glossary#Geostrophic Balance|geostrophic balance]]. | ||
<div id=" | <div id="Sc"></div> | ||
;'''Schmidt Number''' | ;'''Schmidt Number''' | ||
* Definition: <math> Sc = \nu/\kappa </math>, where <math> \nu </math> is the [[#Viscosity|viscosity]], and <math> \kappa </math> is the [[#Diffusivity|mass diffusivity]]. | * Definition: <math> Sc = \nu/\kappa </math>, where <math> \nu </math> is the [[#Viscosity|viscosity]], and <math> \kappa </math> is the [[#Diffusivity|mass diffusivity]]. | ||
* Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to mass diffusivity. | * Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to mass diffusivity. | ||
* Analysis: The typical Schmidt number for water is around 500, depending on the temperature and salinity. For [[Glossary#DNS|direct numerical simulations]], <math> Sc = 1 </math> is commonly used in the literature. See also [[# | * Analysis: The typical Schmidt number for water is around 500, depending on the temperature and salinity. For [[Glossary#DNS|direct numerical simulations]], <math> Sc = 1 </math> is commonly used in the literature. See also [[#Pr|Prandtl number]]. |
Revision as of 11:04, 1 June 2015
- Mach Number
- Definition: , where is the characteristic velocity scale, and is the speed of sound.
- Interpretation: The ratio of inertia force to compressibility force.
- Analysis: Compressibility effects can be neglected if .
- Prandtl Number
- Definition: , where is the viscosity, and is the thermal diffusivity.
- Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to heat diffusivity.
- Analysis: The typical Prandtl number for water is around 7 for water (At 20 degrees Celsius). See also Schmidt number.
- Reynolds Number
- Definition: , where and are the characteristic velocity and length scales, and is the kinematic viscosity.
- Interpretation: The ratio of inertia force to viscous force.
- Analysis: Small Reynolds numbers are often associated with viscous flows, whereas large Reynolds numbers are typically found in turbulent flows.
- Richardson Number (flux)
- Definition: , where the overlines denote the ensemble averages of variables.
- Interpretation: The ratio of the buoyant destruction of turbulent kinetic energy to the shear production.
- Analysis: It is related to the gradient Richardson number by , where the ratio is the turbulent Prandtl number.
- Richardson Number (gradient)
- Definition: , where is the buoyancy frequency, and is the background horizontal velocity.
- Interpretation: The ratio between the strength of stratification and velocity shear.
- Analysis: A sufficient condition for the flow to be linearly stable is that the local Richardson number exceed 0.25 throughout the flow. However, does not mean the flow is necessarily unstable (the criterion is not sufficient). When the flow is not a parallel shear flow, the meaning of is not clear.
- Rossby Number
- Definition: , where is the characteristic velocity, and is the Coriolis frequency, and is the characteristic length scale.
- Interpretation: The ratio of the advective forces to the Coriolis pseudo-forces.
- Analysis: When , Coriolis effects dominate and the system approaches geostrophic balance.
- Schmidt Number
- Definition: , where is the viscosity, and is the mass diffusivity.
- Interpretation: The ratio of momentum diffusivity (i.e. kinematic viscosity) to mass diffusivity.
- Analysis: The typical Schmidt number for water is around 500, depending on the temperature and salinity. For direct numerical simulations, is commonly used in the literature. See also Prandtl number.