Enstrophy equation: Difference between revisions
Jump to navigation
Jump to search
(Created page with "The enstrophy equation describes the production and destruction of enstrophy <math> \Omega = \frac{1}{2} |\vec{\omega}|^2</math> <math> \frac{D \Omega}{Dt} = \underbrace{\ome...") |
mNo edit summary |
||
Line 1: | Line 1: | ||
The enstrophy equation describes the production and destruction of enstrophy <math> \Omega = \frac{1}{2} |\vec{\omega}|^2</math> | The enstrophy equation describes the production and destruction of enstrophy <math> \Omega = \frac{1}{2} |\vec{\omega}|^2</math>. For a stratified, Boussinesq fluid it is | ||
<math> \frac{D \Omega}{Dt} = \underbrace{\omega_i \omega_j e_{ij}}_\text{vortex tilting/stretching} - \underbrace{\frac{g}{\rho_0} \vec{\omega} \cdot \left[ \nabla \times (\rho \hat{k})\right]}_\text{baroclinic} - \underbrace{\nu (\nabla\times \vec{\omega})^2}_\text{viscous destruction} + \underbrace{\nu \nabla\cdot\left[ \vec\omega\times(\nabla\times\vec\omega)\right]}_\text{boundary production} </math> | <math> \frac{D \Omega}{Dt} = \underbrace{\omega_i \omega_j e_{ij}}_\text{vortex tilting/stretching} - \underbrace{\frac{g}{\rho_0} \vec{\omega} \cdot \left[ \nabla \times (\rho \hat{k})\right]}_\text{baroclinic production} - \underbrace{\nu (\nabla\times \vec{\omega})^2}_\text{viscous destruction} + \underbrace{\nu \nabla\cdot\left[ \vec\omega\times(\nabla\times\vec\omega)\right]}_\text{boundary production} </math> | ||
Latest revision as of 15:59, 18 September 2020
The enstrophy equation describes the production and destruction of enstrophy . For a stratified, Boussinesq fluid it is