DJL equations: Difference between revisions

From Fluids Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U_0^2}\eta = 0</math>
<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U_0^2}\eta = 0</math>


where <math> N^2(z) = -g\frac{bar{\rho}'(z)}{\rho_0}</math>.  <math>\bar{\rho}(z)</math> is the far upstream density profile, <math>\rho_0</math> is a constant reference density ,and <math>g</math> is the acceleration due to gravity.   
where <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\rho_0}</math>.  <math>\bar{\rho}(z)</math> is the far upstream density profile, <math>\rho_0</math> is a constant reference density ,and <math>g</math> is the acceleration due to gravity.   


== Boussinesq with non-constant background current <math>U(z)</math> ==
== Boussinesq with non-constant background current <math>U(z)</math> ==


<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U(z-\eta)^2}\eta + \frac{U'(z-\eta)}{U(z-\eta)}\left[1- \left(\eta_x^2 +(1-\eta_z)^2\right)\right] = 0</math>
<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U(z-\eta)^2}\eta + \frac{U'(z-\eta)}{U(z-\eta)}\left[1- \left(\eta_x^2 +(1-\eta_z)^2\right)\right] = 0</math>
Again, <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\rho_0}</math>.


== Non-Boussinesq constant background current <math>U_0</math> ==
== Non-Boussinesq constant background current <math>U_0</math> ==

Revision as of 10:43, 7 July 2011

The Dubreil-Jacotin-Long (DJL) equation is derived from the steady Euler equations. The result is a single equation for the isopycnal displacement . Here are a few cases:

Boussinesq with constant background current

where . is the far upstream density profile, is a constant reference density ,and is the acceleration due to gravity.

Boussinesq with non-constant background current

Again, .

Non-Boussinesq constant background current

where