Euler equations: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The compressible Euler equations for gas dynamics are (mass, momentum, internal energy) <br> | |||
<math> | <math> | ||
\frac{\partial \rho }{\partial t} + \nabla \cdot \left( \rho \mathbf{u} \right) = 0 \, ,</math> <br> | \frac{\partial \rho }{\partial t} + \nabla \cdot \left( \rho \mathbf{u} \right) = 0 \, ,</math> <br> | ||
<math> | <math> | ||
\frac{\partial (\rho u)}{\partial t} + \frac{\partial}{\partial x} \left( \rho u^2 + p \right) + \frac{\partial}{\partial y} \left( \rho u v \right) =0 \, , | \frac{\partial (\rho u)}{\partial t} + \frac{\partial}{\partial x} \left( \rho u^2 + p \right) + \frac{\partial}{\partial y} \left( \rho u v \right) =0 \, , | ||
</math> | </math><br> | ||
<math> | |||
\frac{\partial (\rho v)}{\partial t} + \frac{\partial}{\partial x} \left( \rho u v \right) + \frac{\partial}{\partial y} \left( \rho v^2 + p \right) =0 \, , | |||
</math><br> | |||
<math> | |||
\frac{\partial \rho }{\partial t} + \frac{\partial}{\partial x} \left( u(E+p) \right) + \frac{\partial}{\partial y} \left( v(E+p) \right) =0 \, . | |||
</math><br> | |||
A suitable equation of state used to close of the system is given by | |||
<math> | |||
E = \frac{p}{\gamma -1} + \frac{\rho}{2} \left( u^2 + v^2\right) \; , | |||
</math><br> | |||
where typically <math>\gamma = 1.4</math> for a monoatomic gas. |
Revision as of 14:58, 17 May 2011
The compressible Euler equations for gas dynamics are (mass, momentum, internal energy)
A suitable equation of state used to close of the system is given by
where typically for a monoatomic gas.