SPINS Science Files: Difference between revisions
No edit summary |
|||
Line 163: | Line 163: | ||
where summation is implied over duplicate indices and <math> e_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})</math> | where summation is implied over duplicate indices and <math> e_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})</math> | ||
is the strain rate tensor. | is the strain rate tensor. | ||
== Coherent Vortex Identification for 3D Flows== | |||
The characteristic polynomial of <math>u_{i,j}</math> can be written as | |||
<math>\lambda^3 - P\lambda^2 + Q\lambda - R = 0,</math> | |||
assuming that the flow is 3D. These coefficients are invariants—i.e., scalars—of the flow, and can be used to identify coherent structures that exist in all reference frames. They are given by | |||
<math> P = \lambda_1+\lambda_2+\lambda_3=u_{i,i} , </math> | |||
<math> Q = \frac{1}{2}(\lambda_1^2+\lambda_2^2+\lambda_3^2)=\frac{1}{2}(P^2-u_{i,j}u_{j,i})=\frac{1}{2}(P^2+\Omega_{ij}\Omega_{ij}-S_{ij}S_{ij}), </math> | |||
<math> R = \frac{1}{3}\lambda_1\lambda_2\lambda_3 = det(u_{i,j}). </math> | |||
Typically the flow is assumed to be incompressible, so P=<math>u_{i,i}=0</math>. The more useful variables are Q and R. As can be seen from the definition of Q, large positive values of Q imply that rotation dominates while large negative values of Q imply that strain dominates; this property therefore clarifies whether a region of high vorticity is due to a vortex, or due to a shear stress, respectively. While not immediately obvious, regions of large and positive R correspond to axial stretching in the flow while large and negative R correspond to planar stretching. As a consequence, intersecting iso-surfaces of large Q and large R likely contain coherent vortices. | |||
This discussion of Q and R is adapted from [http://hdl.handle.net/10012/10138 Anton Baglaenko’s PhD thesis]. | |||
=== Q_invt.cpp === | |||
This calculates Q using | |||
<math>Q=\frac{1}{2}((u_{i,i})^2-u_{i,j}u_{j,i})</math> | |||
=== R_invt.cpp === | |||
This calculates R using | |||
<math> R = det(u_{i,j}) = \frac{1}{3}u_{i,j}u_{j,k}u_{k,i} </math> | |||
== Other == | == Other == |
Revision as of 23:12, 19 January 2021
SPINS comes with a variety of Science files which help with simulation data analysis. Below is a list of currently available functions with a brief description of their purpose and the assumptions behind their implementation. These Science files are in spins/src/Science.
Unless otherwise mentioned, the functions below work for both unmapped and mapped domains where the mapping is along the bottom of the domain (where the bottom is at the 0-index in the z-dimension, as opposed to at the index). Another way to say this is that z increases with the index.
Details and Notes
Notation
Warning! Multiple different notations are used below. Subscripts of , , and are always derivatives with respect to the subscript variable. However, subscripts of and are components. That is, and are the x-derivative of and the x-component of vorticity.
Units
The units of each of the functions have been built under the assumption that physical units are being used in the simulation. These computations will work for nondimensional simulations, but more care must be taken to ensure the scalings are appropriate. Physical units are typically:
Length | m |
Time | s |
Density | kg/m^3 |
The reference density should be 1000 kg/m^3 for the stress and dissipation calculations to be physically correct. The density field can be (and often is) non-dimensionalized to . If nondimensionalized, compute_Background_PE.cpp and compute_BPE_from_internal.cpp assume this form of scaling. These two functions also need to know if the density field is dimensional or not.
Boundary Stresses
These functions compute the surface stresses on the top and bottom boundaries. It is assumed that is the top and is the bottom.
Further calculations and saving to disk of various quantities of the stresses are made in the src/BaseCase directory.
bottom_slope.cpp
Compute the vector of the bottom slope at each x-grid point. This is used for calculating the stresses along the bottom boundary (cf. bottom_stress_x.cpp and bottom_stress_y.cpp).
bottom_stress_x.cpp
Compute the 2D vector of the x-component of stress on the bottom boundary. The z boundary condition must be no slip.
If the case is unmapped:
where is the dynamic viscosity.
If the case is mapped:
where and where is the bottom slope.
bottom_stress_y.cpp
Compute the 2D vector of the y-component of stress on the bottom boundary. The z boundary condition must be no slip.
If the case is unmapped:
where is the dynamic viscosity.
If the case is mapped:
where and where is the bottom slope.
top_stress_x.cpp
Compute the 2D vector of the x-component of stress on the top boundary. The z boundary condition must be no slip and have no mapping along the top boundary. Implementation for mapping is missing as of 2020 (it would entail copying what is done for the bottom boundary).
where is the dynamic viscosity.
top_stress_y.cpp
Compute the 2D vector of the y-component of stress on the top boundary. The z boundary condition must be no slip and have no mapping along the top boundary. Implementation for mapping is missing as of 2020 (it's would entail copying what is done for the bottom boundary).
where is the dynamic viscosity.
Energy Budget
See Energy Budget for more details.
compute_Background_PE.cpp
Compute the value of the background potential energy,
where is the depth of an element of the sorted density field which minimized the potential energy (ie. ). For more information see Winters et al. (1995). It is assumed that gravity points in the negative z direction.
compute_BPE_from_internal.cpp
Compute the rate of energy transfer from internal energy into background potential energy.
where and are the depths of the upper and lower boundaries, respectively. The integral is taken over the horizontal extent. For more information see Winters et al. (1995). It is assumed that gravity points in the negative z direction.
dissipation.cpp
Compute the viscous dissipation
where summation is implied over duplicate indices and is the strain rate tensor.
Vorticity and Vorticity Equation
See the Vorticity equation
compute_vorticity.cpp
Compute all vorticity components.
compute_vort_x.cpp
Compute the x-component of vorticity:
compute_vort_y.cpp
Compute the y-component of vorticity:
compute_vort_z.cpp
Compute the z-component of vorticity:
vortex_stretch_x.cpp
Compute the x-component of the vorticity production due to stretching/tilting
vortex_stretch_y.cpp
Compute the y-component of the vorticity production due to stretching/tilting
vortex_stretch_z.cpp
Compute the z-component of the vorticity production due to stretching/tilting
Enstrophy equation
See the Enstrophy equation.
enstrophy_density.cpp
Compute the enstrophy density
enstrophy_stretch_production.cpp
Compute the enstrophy production due to vortex tilting/stretching
where summation is implied over duplicate indices and is the strain rate tensor.
Coherent Vortex Identification for 3D Flows
The characteristic polynomial of can be written as
assuming that the flow is 3D. These coefficients are invariants—i.e., scalars—of the flow, and can be used to identify coherent structures that exist in all reference frames. They are given by
Typically the flow is assumed to be incompressible, so P=. The more useful variables are Q and R. As can be seen from the definition of Q, large positive values of Q imply that rotation dominates while large negative values of Q imply that strain dominates; this property therefore clarifies whether a region of high vorticity is due to a vortex, or due to a shear stress, respectively. While not immediately obvious, regions of large and positive R correspond to axial stretching in the flow while large and negative R correspond to planar stretching. As a consequence, intersecting iso-surfaces of large Q and large R likely contain coherent vortices.
This discussion of Q and R is adapted from Anton Baglaenko’s PhD thesis.
Q_invt.cpp
This calculates Q using
R_invt.cpp
This calculates R using
Other
compute_quadweights.cpp
Compute the quadrature weights for each dimension.
If the boundary condition is no-slip, use the Clenshaw-Curtis quadrature weights:
If the boundary condition is free-slip, use the trapezoid rule:
find_expansion.cpp
Returns the expansion types for each field.
Boundary Condition | Flow Variable | |||
---|---|---|---|---|
u | v | w | otherwise | |
Fourier | Periodic | Periodic | Periodic | Periodic |
No slip | Chebyshev | Chebyshev | Chebyshev | Chebyshev |
Free slip in x | sine | cosine | cosine | cosine |
Free slip in y | cosine | sine | cosine | cosine |
Free slip in z | cosine | cosine | sine | cosine |
Spins assumes that a variable ending in _x
, _y
, or _z
is the x, y, or z derivative of that particular variable. This is needed to get the proper expansion type for the derivative of the given variable.
get_quad.cpp
Fairly certain that this is a deprecated function
overturning_2d.cpp
Details to be added. It's an old function and probably deprecated.
read_2d_restart.cpp
For reading 2D spins files and (likely) extending to 3D.
Unsure why this is in /Science. IO should also be cleaned up since there's a bunch of overlapping functions.
read_2d_slice.cpp
For reading 2D matlab files or 2D slices.
Unsure why this is in /Science. IO should also be cleaned up since there's a bunch of overlapping functions.
swap_trig.cpp
Change cosine expansion to sine expansion and vice versa. To be used in find_expansion for variables of derivatives.