DJL equations: Difference between revisions

From Fluids Wiki
Jump to navigation Jump to search
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Dubreil-Jacotin-Long (DJL) equation is derived from the steady Euler equations.  The result is a single equation for the isopycnal displacement <math>\eta</math>.  Here are a few cases:   
The Dubreil-Jacotin-Long (DJL) equation is derived from the steady, incompressible Euler equations.  The result is a single, non-linear equation for the isopycnal displacement <math>\eta</math>.  Here are a few cases:   


== Boussinesq with constant background current <math>U_0</math> ==
== Boussinesq with constant background current <math>U_0</math> ==
Line 9: Line 9:
== Boussinesq with non-constant background current <math>U(z)</math> ==
== Boussinesq with non-constant background current <math>U(z)</math> ==


<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U(z-\eta)^2}\eta + \frac{U'(z-\eta)}{U(z-\eta)}\left[1- \left(\eta_x^2 +(1-\eta_z)^2\right)\right] = 0</math>
<math>\nabla^2 \eta + \frac{N^2(z-\eta)}{U^2(z-\eta)}\eta + \frac{U'(z-\eta)}{U(z-\eta)}\left[1- \left(\eta_x^2 +(1-\eta_z)^2\right)\right] = 0</math>


Again, <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\rho_0}</math>.  
Again, <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\rho_0}</math>.


== Non-Boussinesq constant background current <math>U_0</math> ==
== Non-Boussinesq constant background current <math>U_0</math> ==
<math>\nabla^2\eta +  \frac{N^2(z-\eta)}{U_0^2}\eta +\frac{N^2(z-\eta)}{2g}\left[\eta_x^2 +\eta_z(\eta_z-2)\right] =0</math>
<math>\nabla^2\eta +  \frac{N^2(z-\eta)}{U_0^2}\eta +\frac{N^2(z-\eta)}{2g}\left[\eta_x^2 +\eta_z(\eta_z-2)\right] =0</math>


where <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\bar{\rho}(z)}</math>
where <math> N^2(z) = -g\frac{\bar{\rho}'(z)}{\bar{\rho}(z)}</math>.

Latest revision as of 09:55, 27 October 2011

The Dubreil-Jacotin-Long (DJL) equation is derived from the steady, incompressible Euler equations. The result is a single, non-linear equation for the isopycnal displacement . Here are a few cases:

Boussinesq with constant background current

where . is the far upstream density profile, is a constant reference density ,and is the acceleration due to gravity.

Boussinesq with non-constant background current

Again, .

Non-Boussinesq constant background current

where .