Navier-Stokes equations: Difference between revisions

From Fluids Wiki
Jump to navigation Jump to search
(Created page with ':<math> :<math>\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \mathbf{Q} = 0</math>')
 
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
:<math>
The incompressible Navier-Stokes equations are <br>
:<math>\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \mathbf{Q} = 0</math>
<math>
\rho  \frac{D \mathbf{u}}{D t} = - \nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{u} \, ,</math><br>
<math>
\nabla \cdot \mathbf{u} = 0 \,, </math><br>
for an adiabatic fluid. A prognostic equation for density is<br>
<math>
\frac{D \rho}{D t} = \kappa \nabla^2 \rho \, .
</math> <br>

Latest revision as of 15:42, 17 June 2011

The incompressible Navier-Stokes equations are


for an adiabatic fluid. A prognostic equation for density is