Euler equations: Difference between revisions

From Fluids Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The compressible Euler equations for gas dynamics are (mass, momentum, internal energy) <br>
<math>
<math>
\frac{\partial \rho }{\partial t} + \nabla \cdot \left( \rho \mathbf{u} \right) = 0 \, ,
\frac{\partial \rho }{\partial t} + \nabla \cdot \left( \rho \mathbf{u} \right) = 0 \, ,</math> <br>
<math>
\frac{\partial (\rho u)}{\partial t} + \frac{\partial}{\partial x} \left( \rho u^2  + p \right) + \frac{\partial}{\partial y} \left( \rho u v  \right) =0 \, ,
</math><br>
<math>
\frac{\partial (\rho v)}{\partial t} + \frac{\partial}{\partial x} \left( \rho u v \right) + \frac{\partial}{\partial y} \left( \rho v^2 + p  \right) =0 \, ,
</math><br>
<math>
\frac{\partial E }{\partial t} + \frac{\partial}{\partial x} \left( u(E+p) \right) + \frac{\partial}{\partial y} \left( v(E+p) \right) =0 \, .
</math><br>
</math><br>
A suitable equation of state used to close the system is given by <br>
<math>
<math>
\frac{\partial (\rho \mathbf{u})}{\partial t}
E = \frac{p}{\gamma -1} + \frac{\rho}{2} \left( u^2 + v^2\right) \; ,
</math>
</math><br>
where typically <math>\gamma = 1.4</math> for a monoatomic gas.

Latest revision as of 15:00, 17 May 2011

The compressible Euler equations for gas dynamics are (mass, momentum, internal energy)




A suitable equation of state used to close the system is given by

where typically for a monoatomic gas.