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Introduction and Motivation

In recent years there has been a push to better understand strati�ed turbulence, looking towards modelling
the ocean and atmosphere. The purpose of this work is to investigate linear stability of a vortex pair as
precusor to understanding the transition to strati�ed turbulence.

In 2000, Billant and Chomaz (BC) performed an experiment in which they created a propagating
counter rotating vortex pair (resembling Lamb-Chaplygin dipole) aligned vertically in a tank of strati�ed
water. They noticed is that initially the vortex pair behaved similiar to the non-strati�ed case. However,
as time went on, the pair evolution exhibited a new instability not seen in the non-strati�ed case. The
instabilities of the vortex pair in a non-strati�ed �uid are well understood due to aeronautical applications
(Crow and elliptic instabilities) but this new instability had no theoretical explanation. BC named this
new instability the �zig-zag� instability because the �uid had a zig-zag like structure.

BC provided a theoretical and numerical explanation of this new zig-zag instability. By doing linear
stability analysis of the Boussinesq equations, they were able to perturbatively and numerically verify and
predict the existence of this zig-zag instability. Through these two methods, they were able to predict the
mode (wavenumber) with the largest growth rate, which agreed with the experimental results, to within
experimental error.

However BC only explore the long wavelength regime growth rates in their numerical solutions. Our
project is looking at what happens if we probe shorter wavelengths. To skip right to the punchline, what
we have found is that there exist shorter wavelength modes that have equivalent or even larger growth
rates then those of the zig-zag instability.

Equations and Numerics

We now proceed with a linear stability analysis of a Lamb-Champlygin dipole, a 2D solution to the Euler
equations, with radius R and velocity U. The governing equations are the Boussinesq equations along
with the density equation
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where the mean density pro�le ρ̄(z) de�nes the buoyancy frequency N2 = −g/ρ0∂ρ̄/∂z, assumed to
be constant here. We can non-dimensionalise this equation by taking the characteristic velocity to be
U , length L, time scale R/U , pressure ρ0U
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Grinding through the algebra and doing the non-dimensionalisation we obtain
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Because the dipole is aligned along the z direction we can express the terms as a normal mode

ũ = u
′(x, y, t)eikzz + c.c.

From here can now take the 2D Fourier transform and de�ne a projection operator to eliminate pressure
to obtain a set of equations in Fourier space.
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= −ikûh0ρ′ +

1

Fh2
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Figure 1: Plot of the vertical vorticity of the full perturbed state (base state plus perturbation) for
Re= 10000 at the second peak growth rate for various Froude.

Figure 2: Plot of the growth rate, σ verus vertical wavneumber kz for Fh = 0.2, Re = 10000.

To �nd the maximum growth rate, we integrate the above equations for a very long time and it can be
shown that the leading eigenmode behaves as

lim
t→∞

u(x, y, t) = U(x, y)eσt

where U(x, y) is the leading eigenmode and σ is the leading eigenvalue. This σ is then calculated by
integrating over the total kinetic energy.

To solve we use a spectral method with 2/3 dealiasing, 2nd order Adams-Bashforth time-stepping
scheme. We have found that a grid size of 512× 512 gives robust results for Re<= 20000.

We have done a parameter sweep looking at Fh = 0.2, 0.1, 0.05, 0.025, Re = 20000, 10000, 5000, 2000
for vertical wavenumbers kz = 1, .., 160.

Results and the future

See plots for some numerical results for Re=10000, Fh= 0.2, 0.1, 0.05.
The �rst peak in the growth rate curve is the zig-zag instability explained by BC. As can be seen in

this case, there exists a second peak which is comparable to the �rst peak. So what is the cause of this
second peak and potentially another oscillatory instability? As of today, unexplained. We are currently
processing the data and trying to get a better feel for what is going on. Currently we are looking at vortex
form of the linear equations and a di�erent nondimensionalisation argument of the Boussinesq equations
to determine which terms are contributing to this second peak.

In the future there are plans to go to a full DNS of the Boussinesq equations.
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