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Given a constant background velocity, U0, the steady state Euler equations of motion for
an incompressible, Boussinesq fluid can be simplified to a single equation for the isopycnal
displacement, η(x, z). This equation is called the Dubreil-Jacotin-Long (DJL) equation, and
with boundary conditions and bottom topography h(x), is given by

∇2η +
N2(z − η)

U2
0

η = 0 (1)

η → 0 as x→ ±∞ (2)

η = 0 at z = 1 and η = h(x) at z = h(x), (3)

where
N2(z) = − g

ρ0
ρ̄′(z).

In these definitions, ρ0 is a constant reference density, ρ̄(z) is the density profile far upstream
of the topography, and g is the acceleration due to gravity. The topography h(x) is isolated,
which means that it tends to zero as x→ ±∞.

This equation can yield very large trapped disturbances when U0 is close to the conjugate
flow speed, cj . We consider supercritical flows, U0/cj > 1, for which waves cannot propagate
upstream. In this case, the steady DJL theory can yield very large, trapped waves for certain
density profiles and background velocities close to cj . These waves are described in the Figure.

The density profile we have used is

ρ̄(z) = 1−∆ρ tanh

(
z − zj
dj

)
,

where ∆ρ = 0.02 and dj = 0.1. We have considered several values of zj : zj = 0.6 and zj = 0.4.
Large waves can occur for zj = 0.6 for hole topography and zj = 0.4 for hill topography.

We have solved the DJL equation with two methods: 1) a mapped method which involves a
mapping relation between the computational domain and physical domain and 2) an iterative
method where the DJL equation is solved on a rectangular domain and the bottom boundary
condition is implemented iteratively. With the mapped method, the bottom boundary condi-
tion is easily set using a Dirichlet condition. However, this method is expensive since it results
in large, full matrices due to the mapping. We have found that the iterative method is compu-
tationally more efficient and can implement the bottom boundary condition with satisfactory
error (O(10−6)).

The bottom boundary condition is implemented using a method by Laprise and Peltier:

ηN+1(z = 0) = ηN (z = 0)− errN (z = h)

errN (z = h) = ηN (z = h)− h.
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Figure 1: Density contours for a large trapped wave over hole topography with zj=0.6 (top).
Maximum wave amplitude (bottom left) and a measurement of wave width (bottom right) for
several background speeds and hill/hole topography. The wave width is defined as the location
where the perturbation surface velocity becomes half of its extreme value. The hill cases take
zj = 0.4 and the hole cases take zj = 0.6. The shaded circles correspond to the wave in the
upper panel.
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