Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences

Parallel Computing on GPUs

Michael Bader, Alexander Breuer Technische Universität München

References & Literature

- D. Kirk, W. Hwu: *Programming Massively Parallel Processors*, Morgan Kaufmann, 2010
- J. Sanders, E. Kandrot: *CUDA by Example – An Introduction to General-Purpose GPU Programming*, Addison Wesley, 2011
- NVIDIA CUDA Programming Guide

GPU Computing – Origins

Fixed-function graphics pipelines:

- 80ies/90ies: hardware configurable, but not programmable
- implementation of graphics APIs (OpenGL, DirectX, etc.)
- vertex shading/transform/lighting, raster operations, textures, etc.

Programmable Real-Time Graphics:

- shader programmability, floating-point pixel/shader/vertex processing
- resp. API extensions in DirectX, OpenGL
- programmable pipeline stages; hardware evolves towards massively parallel architectures

GPU Computing – Origins (2)

"GPGPU":

- general purpose computing on GPUs
- implement non-graphical algorithms/computations via shader functions
- driven by performance advantage of GPUs (for certain class of problems)

GPU Computing:

- hardware-side: general trend towards "many-core"; GPUs evolve towards massively parallel, wider-purpose architectures
- software-side: programming models for GPU computing: CUDA, OpenCL, ...

Gene Golub SIAM Summer School 2012 - Simulation and Supercomputing in the Geosciences,

GPU Architectures – NVIDIA Fermi

(source: NVIDIA - Fermi Whitepaper)

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences,

GPU Architectures – NVIDIA Fermi (2)

(source: NVIDIA - Fermi Whitepaper)

Fermi Streaming Multiprocessor (SM)

6

пπ

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 - Simulation and Supercomputing in the Geosciences,

GPU Architectures – Some First Observations

Processing Units

- · massive parallelism: lots (hundreds) of cores
- Instruction Cache, Warp Scheduler, Dispatch Unit:
 - \rightarrow shared for multiple CUDA cores
 - \rightarrow "single instruction multiple thread" concept

Memory:

- on-chip DRAM (GPU main memory)
 - \rightarrow accounts for memory bandwidth values
- L2 cache \rightarrow fairly recent development for GPUs
- L1 cache/shared memory and registers:
 - \rightarrow again shared between many cores

M. Bader, A. Breuer: Parallel Computing on GPUs Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences,

пп

"Moving/Accessing Memory is Evil"

Development of Memory Performance

- CPU performance increases by 59% each year
- memory bandwidth increases by 23 % each year
- memory latency improves by 5 % each year
- \Rightarrow memory is a bottleneck!

Additional Issues:

- · access of individual elements vs. "blocks" of data
- stream-like access to memory
- \Rightarrow same problems for CPUs and GPUs
- ⇒ certain differences in approaching these problems (GPU approach: latency hiding by fast task switching)

Part I CUDA Basics

CUDA – Architecture Model

Host & Device:

- host = regular CPU, main memory
- device(s) = GPU/coprocessor(s) with separate memory

Parallel Computing Concept:

- massively parallel architecture (hundreds of cores)
- lightweight threads, hardware-supported; typically multiple threads assigned to every core
- massive parallelism hides memory latency:
 - \rightarrow hardware-supported (fast) task-switching
 - \rightarrow focus on data parallelism \dot{k} vectorization

CUDA – Programming Model

CUDA as extension of C/C++:

- host code (program control) and device code (GPU) combined in a single C program
- device code consists of massively parallel kernels that are off-loaded to the GPU
- language extension for defining and calling kernels
- API functions to allocate device/host memory, synchronize threads, etc.
- SIMD/SPMD (single instruction/program, multiple data)??
 → SIMT (single instruction/multiple thread)

Let's Dive Into an Example: Matrix Multiplication

A parallel algorithm for matrix multiplication:

```
for i from 1 to n do in parallel
for k from 1 to n do in parallel
for j from 1 to n do
C[i,k] += A[i,j]*B[j,k]
```

- algorithmic model ("PRAM"): execute on n² processors
 → compute the elements C[i,k] entirely in parallel
- CUDA: n² CUDA threads; each thread executes one j-loop (i.e., computes one element C[i,k])
- part 1: memory transfer (host→device and device→host)
- part 2: launch/execution of kernel code for each j-loop

пп

Matrix Multiplication – Memory Allocation

```
host
void matrixMult(float *A, float *B, float *C, int n)
   int size = n*n*sizeof(float);
   float * Ad; float * Bd; float * Cd;
  cudaMalloc((void**)&Ad, size);
  cudaMalloc((void **)&Bd, size);
  cudaMalloc((void **)&Cd, size);
  /*-- missing here:
  /*-- transfer of input/output to/from GPU --*/
  /*-- matrix multiplication on GPU
                                             __*/
  cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
```

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences,

πп

Matrix Multiplication – Memory Transfer

```
__host__
void matrixMult(float *A, float *B, float *C, int n)
{
    int size = n*n*sizeof(float);
    float* Ad; float* Bd; float* Cd;
    /*-- cudaMalloc for Ad, Bd, Cd skipped ---*/
```

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice); cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice); cudaMemcpy(Cd, C, size, cudaMemcpyHostToDevice);

/*-- perform multiplication on device --*/

```
cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);
/*-- cudaFree for Ad, Bd, Cd skipped --*/
```


Matrix Multiplication – CUDA Kernel

```
__global__
void matrixMultKernel(float* Ad, float* Bd, float* Cd, int n)
{
    /*-- determine i and k for the current thread: --*/
    int i = threadIdx.x;
    int k = threadIdx.y;
    /*-- compute a single element of C[i,k]: --*/
    float Celem = 0;
    for(int j=0; j<n; j++) {
        The terminal te
```

```
float Aelem = Ad[i*n+j];
float Belem = Bd[j*n+k];
Celem += Aelem*Belem;
};
Cd[i*n+k] += Celem;
```


Kernel Invocation: Grids and Blocks

```
__host__
void matrixMult(float *A, float *B, float *C, int n)
{
    /* ... */
    dim3 dimBlock(n,n);
    dim3 dimGrid(1,1);
    matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
    /* ... */
}
```

- threads (max. 512) are combined to 3D blocks:

 → threadIdx.x, threadIdx.y, threadIdx.z
 (example above: n × n × 1 block)
- blocks are combined to 1D or 2D grids:
 - \rightarrow blockIdx.x, blockIdx.y

Grids and Blocks in CUDA

Blocks:

- threads can be organised as 1D, e.g. (128,1,1), 2D, e.g. (16,16,1), or 3D, e.g. (4,8,16) blocks
- limited to 512 threads per block
- threads in one block are always executed in parallel
- and can use separate, shared memory

Grids:

- dim3, but 2D layout (3rd component ignored)
- up to 65536×65536 blocks per grid
- blocks in a grid may be executed in parallel (but, in practice, will be scheduled to available cores)

Matrix Multiplication – with Grid

```
-_global__
void matrixMultKernel(float* Ad, float* Bd, float* Cd, int n)
{
    /*-- determine i and k for the current thread: --*/
    int i = blockIdx.x * TILE_SIZE + threadIdx.x;
    int k = blockIdx.y * TILE_SIZE + threadIdx.y;
```

```
/*-- compute a single element of C[i,k]: --*/
float Celem = 0;
for(int j=0; j<n; j++) {
    float Aelem = Ad[i*n+j];
    float Belem = Bd[j*n+k];
    Celem += Aelem*Belem;
};
Cd[i*n+k] += Celem;</pre>
```


Matrix Multiplication – with Grid (2)

__host__ void matrixMult(float *A, float *B, float *C, int n) { /* ... */ dim3 dimBlock(TILE_SIZE,TILE_SIZE); dim3 dimGrid(n/TILE_SIZE,n/TILE_SIZE);

matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n); /* ... */

- choose TILE_SIZE = 16 ("square" blocks and number of threads < 512)
- in practice: requires padding of matrix (i.e., fill with zeros) to match size (multiple of 16)
- works for large matrices how about performance?

ПП

Part II

Hardware-Aware Programming with CUDA: GPU Memory

CUDA Memory

Types of **device** memory in CUDA:

- per thread: registers and local memory
 - ightarrow locally declared variables and arrays (local memory),
 - \rightarrow lifetime: kernel execution
- per block: shared memory
 - \rightarrow keyword <u>__shared__</u>,
 - \rightarrow lifetime: kernel execution
- per grid: global memory and constant memory
 - \rightarrow keywords __device__, __constant__;
 - \rightarrow lifetime: entire application
- vs.: CPU main memory (host memory)

Matrix Multiplication – Performance Estimate

Multiplication kernel:

```
for(int j=0; j<n; j++) {
    float Aelem = Ad[i*n+j];
    float Belem = Bd[j*n+k];
    Celem += Aelem*Belem;
};</pre>
```

 memory bandwidth: 11.2 GB/s on my laptop, NVIDIA NVS4200M)

vs. 97.6 GB/s (on mathgpu, Tesla C2070)

- two floating-point operations (multiply and add) per two floating-point variables (each 4 byte)
- thus: max. of 3 giga float variable can be transferred from global memory per second
- limits performance to < 3GFlop/s
- Experiment: profiling of matrix multiplication kernel (→ NVIDIA Visual Profiler)

пп

Matrix Multiplication and Memory Usage

- observation: simple matrix multiplication kernel is slow (far below peak performance)
- anticipated reason: only access to slow global memory; performance limited by memory bandwidth between global memory and CUDA cores

Matrix Multiplication with Tiling

Remedy: Tiling

switch to tile-oriented implementation:

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$$

- copy matrix tiles A₁₁, B₁₁, etc., into shared memory
- let all threads of a block work together on shared tile
 → multipliy matrix tiles: A₁₁B₁₁, A₁₂B₂₁, ...
- accumulate result tile back on matrix in global memory: $C_{11} = A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31}$ $C_{12} = A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32}$

Matrix Multiplication – with Tiles

```
__global__
void matrixMultKernel(float * Ad, float * Bd, float * Cd, int n)
   __shared__ float Ads[TILE_SIZE][TILE_SIZE];
   __shared__ float Bds[TILE_SIZE][TILE_SIZE];
   int tx = threadIdx.x;
   int ty = threadIdx.y;
   int i = blockldx.x * TILE_SIZE + tx:
   int k = blockldx.y * TILE_SIZE + ty;
   for (int m=0; m < n/TILE_SIZE; m++) {
      Ads[tx][ty] = Ad[i*n + m*TILE_SIZE+ty];
      Bds[tx][ty] = Bd[(m*TILE_SIZE+tx)*n + k];
```

/* perform matrix multiplication on shared tiles */

Matrix Multiplication – with Tiles

```
/* (cont.) */
for(int m=0; m < n/TILE_SIZE; m++) {
   Ads[tx][ty] = Ad[i*n + m*TILE_SIZE+ty];
   Bds[tx][ty] = Bd[(m*TILE_SIZE+tx)*n + k];
   __syncthreads():
   /* perform matrix multiplication on shared tiles */
   for(int j=0; j<TILE_SIZE; j++)
      Celem += Ads[tx][i]*Bds[i][ tv ]:
  __syncthreads();
};
Cd[i*n+k] += Celem;
```


A Note on Synchronisation

Barrier synchronisation in CUDA:

- not all threads of a thread block necessarily executed in parallel (remember, e.g., fast switching between different task groups)
- between parallel/collective reads and subsequent writes
 ⇒ barrier required for all threads within a thread block:

__syncthreads();

- all threads need to execute (or not) the same(!) call to __syncthreads()
- threads of the same block scheduled to the same hardware unit
- in contrast: no synchronisation features for threads in a grid
 → reason: *transparent scheduling* of entire blocks

Updated Performance Estimate

- at start, each thread loads one matrix element from global memory
- shared memory \rightarrow no further loads in TILE_SIZE m-iterations
- we reduce the memory transfer from global memory to 1/TILE_SIZE
- for TILE_SIZE = 16: new performance limit at 640*GFlop/s*
- $\rightarrow\,$ we've eliminated a major bottleneck, but apparently hit another \ldots

Experiment: profiling of tiled matrix multiplication kernel

Part III

Hardware-Aware Programming with CUDA: Threads, Warps, and Coalesced Access

Thread Assignment and Thread Scheduling

CUDA programming model:

- 2D grid of 3D blocks
- blocks are scheduled to execution resources (block-by-block; parallel, if possible)

CUDA hardware:

- cores (streaming processors, SP) organised into streaming multiprocessors (SM)
- multiple blocks can be simultaneously assigned to an SM

Thread Scheduling:

- threads of a block are sub-divided into warps (32 threads)
- warps are scheduled to SMs; threads in a warp are executed in SIMT (single instruction, multiple thread) fashion

M. Bader, A. Breuer: Parallel Computing on GPUs Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences,

пп

Coalesced Memory Access

Hardware issues in memory access:

- DRAM (i.e., global memory) built, such that multiple *contiguous* memory slots are read together (compare: cache lines)
- in CUDA: memory access of threads will be simultaneous by all threads in a warp
- if accesses are to contiguous memory locations (in the order given by the thread ID) and 16-word-aligned
 ⇒ coalesced memory access
- coalesced memory access required to achieve full memory bandwidth

Coalesced Access in Matrix Multiplication

Copy matrix tile *m* from global into shared memory:

```
Ads[tx][ty] = Ad[ i*n + m*TILE_SIZE+ty];
Bds[tx][ty] = Bd[ (m*TILE_SIZE+tx)*n + k];
__syncthreads();
```

Do we have coalesced memory access?

- row computation: i = blockIdx.x * TILE_SIZE + tx
- oclumn computation: k = blockIdx.y * TILE_SIZE + ty
- ⇒ stride-1 access w.r.t. ty, stride-n access w.r.t. tx

Question: which threads are combined in a warp?

Warps and Coalesced Access

Combination of threads into warps:

- 1D thread block: thread 0, ... 31 into warp 0; thread 32, ... 63 into warp 1; etc.
- 2D thread block: x-dimension is "faster-running"; e.g.:
 - dimBlock(8,8,1), i.e., 64 threads (2 warps)
 - then threads (0,0), ..., (7,3) are in warp 0 and threads (0,4), ..., (7,7) are in warp 1
- 3D thread block: x, then y, then z

Tile-Copying in Matrix Multiplication:

- · threads with consecutive tx value in one warp
- leads to stride-n access ⇒ not coalesced

Matrix Multiplication with Coalesced Access

Switch tx and ty \Rightarrow stride-1 (coalesced) access to Ad, Bd:

```
int i = blockldx.y * TILE_SIZE + ty;
int k = blockIdx.x * TILE_SIZE + tx;
float Celem = 0:
for(int m=0; m < n/TILE_SIZE; m++) {
  Ads[ty][tx] = Ad[i*n + m*TILE_SIZE+tx];
  Bds[ty][tx] = Bd[(m*TILE_SIZE+ty)*n + k];
  __svncthreads():
  for(int j=0; j<TILE_SIZE; j++)
     Celem += Ads[ty][i]*Bds[i][tx];
  __syncthreads();
};
Cd[i*n+k] += Celem;
```

Experiment: profiling of "coalesced" matrix multiplication kernel

пп

Memory Latency for Tile Transfers

Recapitulate tiled matrix multiplication:

- tiles of 16×16 matrix elements
 - \rightarrow $16^2=256$ threads per tile (also per thread block)
- thus: 8 warps (32 threads each)
- examine load operation for matrix tiles

Ads[ty][tx] = Ad[i*n + m*TILE_SIZE+tx]; Bds[ty][tx] = Bd[(m*TILE_SIZE+ty)*n + k]; __syncthreads();

- \rightarrow delay due to memory latency
- all threads in a warp wait for data to arrive
- but another warp can be scheduled to work

Question: are there enough warps to hide latency?

Tiled Matrix Multiplication with Prefetching

Include prefetching of blocks to reduce "idle" time for memory transfer:

- 1. load first tile into register(s)
- 2. copy register(s) to shared memory
- 3. load next tile into register(s)
- 4. compute current tile
- 5. proceed with 2 (if there are more tiles)
- 6. compute last tile

(see code example)

Experiment: profiling of "prefetching" matrix multiplication kernel

Use of Registers

How many registers do we actually need?

- two registers per thread \rightarrow 512 registers per block
- GTX 285: each SM has 1024 thread slots
 ⇒ 4 blocks can be run in parallel
- hence, we require 2024 additional registers

How many registers are there?

- GTX 285: 8192 registers for each SM
- dynamical partitioning of registers to blocks/threads
- assume that a multiplication kernel requires 10 registers: 10 ⋅ 16² = 2560 registers per block
 ⇒ only 3 blocks can run

Dynamic Partitioning of Resources

Limits for execution of threads (for NVS 4200M)

- threads per block (1024)
- blocks per SM (8)
- thread slots per SM (1024)
- registers per SM (32768)
- padding of warps (blocks per warp not a multiple of 32)

Leads to trade-offs for performance:

- limited number of threads reduces parallelism (and, thus, achievable performance)
- "performance cliffs": slight change in set-up might lead to jumps in available blocks
- requires detailed estimates (or lots of testing?) to determine best option

пп

Towards High-Performance Matrix Multiplication

More Options for Optimisation:

- loop unrolling (save loop instructions and address arithmetics)
- thread granularity: compute 1 \times 2 or 1 \times 4 blocks per thread (requires to load Ads or Bds only once)
- how do different optimisations interact with resource limitations (available registers, etc.)

пп

Thread Execution – SIMT

"Single Instruction, Multiple Thread":

- hardware executes same instruction for all threads in a warp
- execution of if-else-statements:
 - first, execute if-branch (for part of the threads)
 - then, execute else-branch (for all other threads)
- "diverging" thread execution; similar: for- and while-loops

Exercise: Maximum Reduction

- task: parallel computation of the maximum
- reduction operation via "binary fan-in"
- how can diverging threads be avoided?

Maximum Search – Parallel Reduction

Classical approach: "Binary Fan-In"

Maximum Search – Parallel Reduction (2)

Alternative approach for "Binary Fan-In"

"Binary Fan-In" and Warps

Alternative 1 on GPU:

- in-place computation:
 "local" maxima overwrite data
- with warps: no control on sequence of updates

Alternative 2 on GPU:

- in-place computation and synchronisatzion of warps no longer critical, but:
- strided access within warps:
 → idle threads/"thread divergence"

Gene Golub SIAM Summer School 2012 - Simulation and Supercomputing in the Geosciences,

Maximum Search – "Binary Fan-In" for GPUs

"Contiguous" threads (of a warp) access contiguous memory cells!

M. Bader, A. Breuer: Parallel Computing on GPUs Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences,

пπ

Maximum Computation on the GPU

Basic Implementation:

```
__global__
void kernelMaximum(float* h, int size) {
 /*-- size has to be a power of 2 and smaller than 512/1024 --*/
  int tx = threadIdx.x:
 for (int i=size/2; i>0; i=i/2) {
    __syncthreads();
     if (tx < i) {
        if (h[tx] < h[tx+i]) h[tx] = h[tx+i];
     };
 };
/*-- kernel call · --*/
dim3 dimBlock(threads); // 1D thread block
kernelMaximum<<<dimGrid,dimBlock>>>(h,threads);
```


Maximum on the GPU

Towards Optimized Implementations

Further steps to consider:

- extend for larger thread blocks (multiple kernel calls, e.g.)
- perform reduction in shared memory (copy/reduce to shared memory in first step)
 ~> perhaps a version that does not overwrite the original array ...
- unrolling of loops, optimize for specific thread block sizes

Reference and optimized kernel:

M. Harris: Optimizing Parallel Reduction in CUDA (NVIDIA tutorial) http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Part IV

GPU Computing: A Call to Arms?

What We Did Not Cover ...

Other programming models:

• OpenCL: programming model/language for hybrid computing; backends for GPUs and CPUs

 \rightarrow short code example (Ch. Dittrich):

 OpenACC: compiler directives to specify loops/parallel code that can be offloaded to accelerator hardware → short code example (source: NVIDIA):

```
!$acc parallel loop
```

```
do i=0, n-1
!--> loop body skipped
end do
```

```
$acc end parallel loop
```


пп

What We Did Not Cover ...

Other programming models (cont.):

ArBB: (Intel Array Building Blocks, unfortunately deprecated ...)
 → short code example (D. Gudu):

A List of Further "Usual Suspects"

Further parallel programming models/languages in HPC:

- MPI, OpenMP are still around ...
- PGAS languages ("partitioned global address space"): Unified parallel C, Coarray Fortran, Chapel, Titanium, X10, ...
- Intel Parallel Building Blocks (TBB, Cilk, Array Notations, ...) and **#pragma** simd constructs

The Quest for the Future Parallel Programming Model

- MPI will probably stay for quite some time
- MPI+X to replace MPI+OpenMP for hybrid parallelization?
- extensions of C/C++/Fortran: not clear which exactly, but there will certainly be some . . .
- guaranteed: you need to program/think in parallel

пп

Twelve Ways to Fool the Masses

(selection)

• Quote only 32-bit performance results, not 64-bit results.

 \rightarrow single precision on the GPU, double precision on the CPU??

• Present performance figures for an inner kernel, and then represent these figures as the performance of the entire application.

 \rightarrow did you include the transfer time from/to GPU?

Compare your results against scalar, unoptimized code on Crays

→ compare optimized GPU code with non-optimized CPU code

Source: D. H. Baily: *Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers*, Supercomputing Review, 1991

Twelve Ways to Fool the Masses (2)

(continued)

• When direct run time comparisons are required, compare with an old code on an obsolete system

\rightarrow compare performance on the latest GPU with a single-core CPU??

 Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar

\rightarrow MFLOPS per Watt!!

 Mutilate the algorithm used in the parallel implementation to match the architecture

\rightarrow Gauß-Seidel on GPU vs. Multigrid on CPU??

• If all else fails, show pretty pictures and animated videos, and don't talk about performance

 \rightarrow Well, that's more or less what we did :-)

пп