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GPU Computing – Origins

Fixed-function graphics pipelines:
• 80ies/90ies: hardware configurable, but not programmable
• implementation of graphics APIs (OpenGL, DirectX, etc.)
• vertex shading/transform/lighting, raster operations, textures, etc.

Programmable Real-Time Graphics:
• shader programmability, floating-point pixel/shader/vertex

processing
• resp. API extensions in DirectX, OpenGL
• programmable pipeline stages; hardware evolves towards

massively parallel architectures
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GPU Computing – Origins (2)

“GPGPU”:
• general purpose computing on GPUs
• implement non-graphical algorithms/computations via shader

functions
• driven by performance advantage of GPUs

(for certain class of problems)

GPU Computing:
• hardware-side: general trend towards “many-core”;

GPUs evolve towards massively parallel, wider-purpose
architectures

• software-side: programming models for GPU computing:
CUDA, OpenCL, . . .
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GPU Architectures – NVIDIA Fermi

7 

 

Hardware Execution 

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes 

one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks; 

and CUDA cores and other execution units in the SM execute threads. The SM executes 

threads in groups of 32 threads called a warp. While programmers can generally ignore warp 

execution for functional correctness and think of programming one thread, they can greatly 

improve performance by having threads in a warp execute the same code path and access 

memory in nearby addresses.    

 

An Overview of An Overview of An Overview of An Overview of the Fermi Architecturethe Fermi Architecturethe Fermi Architecturethe Fermi Architecture    

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA 

cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The 

512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory 

partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM 

memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread 

global scheduler distributes thread blocks to SM thread schedulers. 

 

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical 

rectangular strip that contain an orange portion (scheduler and dispatch), a green portion 
(execution units), and light blue portions (register file and L1 cache). 

(source: NVIDIA – Fermi Whitepaper)
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GPU Architectures – NVIDIA Fermi (2)

→ “Streaming Multiprocessor” (SM)
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Third Generation Streaming 

Multiprocessor  

The third generation SM introduces several 

architectural innovations that make it not only the 

most powerful SM yet built, but also the most 

programmable and efficient. 

512 High Performance CUDA cores 

Each SM features 32 CUDA 

processors—a fourfold 

increase over prior SM 

designs.  Each CUDA 

processor has a fully 

pipelined integer arithmetic 

logic unit (ALU) and floating 

point unit (FPU). Prior GPUs used IEEE 754-1985 

floating point arithmetic.  The Fermi architecture 

implements the new IEEE 754-2008 floating-point 

standard, providing the fused multiply-add (FMA) 

instruction for both single and double precision 

arithmetic.  FMA improves over a multiply-add 

(MAD) instruction by doing the multiplication and 

addition with a single final rounding step, with no 

loss of precision in the addition.  FMA is more 

accurate than performing the operations 

separately. GT200 implemented double precision FMA. 

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, 

multi-instruction emulation sequences were required for integer arithmetic.  In Fermi, the newly 

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard 

programming language requirements.  The integer ALU is also optimized to efficiently support 

64-bit and extended precision operations. Various instructions are supported, including 

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population 

count. 

16 Load/Store Units  

Each SM has 16 load/store units, allowing source and destination addresses to be calculated 

for sixteen threads per clock. Supporting units load and store the data at each address to 

cache or DRAM.  
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GPU Architectures – Some First Observations

Processing Units

• massive parallelism: lots (hundreds) of cores
• Instruction Cache, Warp Scheduler, Dispatch Unit:
→ shared for multiple CUDA cores
→ “single instruction multiple thread” concept

Memory:

• on-chip DRAM (GPU main memory)
→ accounts for memory bandwidth values

• L2 cache→ fairly recent development for GPUs
• L1 cache/shared memory and registers:
→ again shared between many cores
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“Moving/Accessing Memory is Evil”

Development of Memory Performance

• CPU performance increases by 59 % each year
• memory bandwidth increases by 23 % each year
• memory latency improves by 5 % each year

⇒ memory is a bottleneck!

Additional Issues:

• access of individual elements vs. “blocks” of data
• stream-like access to memory

⇒ same problems for CPUs and GPUs
⇒ certain differences in approaching these problems

(GPU approach: latency hiding by fast task switching)
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Part I

CUDA Basics
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CUDA – Architecture Model

Host & Device:

• host = regular CPU, main memory
• device(s) = GPU/coprocessor(s) with separate memory

Parallel Computing Concept:

• massively parallel architecture (hundreds of cores)
• lightweight threads, hardware-supported;

typically multiple threads assigned to every core
• massive parallelism hides memory latency:
→ hardware-supported (fast) task-switching
→ focus on data parallelism&̇ vectorization
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CUDA – Programming Model

CUDA as extension of C/C++:
• host code (program control) and device code (GPU) combined in

a single C program
• device code consists of massively parallel kernels that are

off-loaded to the GPU
• language extension for defining and calling kernels
• API functions to allocate device/host memory, synchronize

threads, etc.
• SIMD/SPMD (single instruction/program, multiple data)??
→ SIMT (single instruction/multiple thread)
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Let’s Dive Into an Example: Matrix Multiplication

A parallel algorithm for matrix multiplication:

for i from 1 to n do in parallel
for k from 1 to n do in parallel

for j from 1 to n do
C[i ,k] += A[i , j ]∗B[j ,k]

• algorithmic model (“PRAM”): execute on n2 processors
→ compute the elements C[i ,k] entirely in parallel

• CUDA: n2 CUDA threads; each thread executes one j-loop
(i.e., computes one element C[i ,k])

• part 1: memory transfer (host→device and device→host)
• part 2: launch/execution of kernel code for each j-loop

M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication – Memory Allocation

host
void matrixMult(float ∗A, float ∗B, float ∗C, int n)
{

int size = n∗n∗sizeof(float);
float∗ Ad; float∗ Bd; float∗ Cd;

cudaMalloc((void∗∗)&Ad, size);
cudaMalloc((void∗∗)&Bd, size);
cudaMalloc((void∗∗)&Cd, size);

/∗−− missing here: −−∗/
/∗−− transfer of input /output to /from GPU −−∗/
/∗−− matrix multiplication on GPU −−∗/

cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
}
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Matrix Multiplication – Memory Transfer

host
void matrixMult(float ∗A, float ∗B, float ∗C, int n)
{

int size = n∗n∗sizeof(float);
float∗ Ad; float∗ Bd; float∗ Cd;
/∗−− cudaMalloc for Ad, Bd, Cd skipped −−∗/

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);
cudaMemcpy(Cd, C, size, cudaMemcpyHostToDevice);

/∗−− perform multiplication on device −−∗/

cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);
/∗−− cudaFree for Ad, Bd, Cd skipped −−∗/

}
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Matrix Multiplication – CUDA Kernel

global
void matrixMultKernel(float∗ Ad, float∗ Bd, float∗ Cd, int n)
{

/∗−− determine i and k for the current thread: −−∗/
int i = threadIdx.x;
int k = threadIdx.y;

/∗−− compute a single element of C[i,k]: −−∗/
float Celem = 0;
for( int j=0; j<n; j++) {

float Aelem = Ad[i∗n+j];
float Belem = Bd[j∗n+k];
Celem += Aelem∗Belem;

};
Cd[i∗n+k] += Celem;

}
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Kernel Invocation: Grids and Blocks

host
void matrixMult(float ∗A, float ∗B, float ∗C, int n)
{

/∗ ... ∗/
dim3 dimBlock(n,n);
dim3 dimGrid(1,1);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/∗ ... ∗/

}

• threads (max. 512) are combined to 3D blocks:
→ threadIdx.x, threadIdx.y, threadIdx.z
(example above: n × n × 1 block)

• blocks are combined to 1D or 2D grids:
→ blockIdx.x, blockIdx.y
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Grids and Blocks in CUDA

Blocks:
• threads can be organised as 1D, e.g. (128,1,1),

2D, e.g. (16,16,1), or 3D, e.g. (4,8,16) blocks
• limited to 512 threads per block
• threads in one block are always executed in parallel
• and can use separate, shared memory

Grids:
• dim3, but 2D layout (3rd component ignored)
• up to 65536× 65536 blocks per grid
• blocks in a grid may be executed in parallel

(but, in practice, will be scheduled to available cores)
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Matrix Multiplication – with Grid

global
void matrixMultKernel(float∗ Ad, float∗ Bd, float∗ Cd, int n)
{

/∗−− determine i and k for the current thread: −−∗/
int i = blockIdx.x ∗ TILE SIZE + threadIdx.x;
int k = blockIdx.y ∗ TILE SIZE + threadIdx.y;

/∗−− compute a single element of C[i,k]: −−∗/
float Celem = 0;
for( int j=0; j<n; j++) {

float Aelem = Ad[i∗n+j];
float Belem = Bd[j∗n+k];
Celem += Aelem∗Belem;

};
Cd[i∗n+k] += Celem;

}
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Matrix Multiplication – with Grid (2)

host
void matrixMult(float ∗A, float ∗B, float ∗C, int n)
{

/∗ ... ∗/
dim3 dimBlock(TILE SIZE,TILE SIZE);
dim3 dimGrid(n/TILE SIZE,n/TILE SIZE);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/∗ ... ∗/

}

• choose TILE SIZE = 16
(“square” blocks and number of threads < 512)

• in practice: requires padding of matrix (i.e., fill with zeros) to
match size (multiple of 16)

• works for large matrices – how about performance?

M. Bader, A. Breuer: Parallel Computing on GPUs
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Part II

Hardware-Aware Programming
with CUDA: GPU Memory
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CUDA Memory

Types of device memory in CUDA:
• per thread: registers and local memory
→ locally declared variables and arrays (local memory),
→ lifetime: kernel execution

• per block: shared memory
→ keyword shared ,
→ lifetime: kernel execution

• per grid: global memory and constant memory
→ keywords device , constant ;
→ lifetime: entire application

• vs.: CPU main memory (host memory)
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Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences, 21



Technische Universität München

Matrix Multiplication – Performance Estimate
Multiplication kernel:

for( int j=0; j<n; j++) {
float Aelem = Ad[i∗n+j];
float Belem = Bd[j∗n+k];
Celem += Aelem∗Belem;

};
• memory bandwidth: 11.2 GB/s on my laptop, NVIDIA

NVS4200M)
vs. 97.6 GB/s (on mathgpu, Tesla C2070)

• two floating-point operations (multiply and add) per two
floating-point variables (each 4 byte)

• thus: max. of 3 giga float variable can be transferred from global
memory per second

• limits performance to < 3GFlop/s
• Experiment: profiling of matrix multiplication kernel

(→ NVIDIA Visual Profiler)
M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication and Memory Usage

• observation: simple matrix multiplication kernel is slow
(far below peak performance)

• anticipated reason: only access to slow global memory;
performance limited by memory bandwidth between global
memory and CUDA cores

M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication with Tiling

Remedy: Tiling
• switch to tile-oriented implementation: A11 A12 A13

A21 A22 A23
A31 A32 A33

 B11 B12 B13
B21 B22 B23
B31 B32 B33

 =

 C11 C12 C13
C21 C22 C23
C31 C32 C33


• copy matrix tiles A11, B11, etc., into shared memory
• let all threads of a block work together on shared tile
→ multipliy matrix tiles: A11B11, A12B21, . . .

• accumulate result tile back on matrix in global memory:
C11 = A11B11 + A12B21 + A13B31
C12 = A11B12 + A12B22 + A13B32

M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication – with Tiles

global
void matrixMultKernel(float∗ Ad, float∗ Bd, float∗ Cd, int n)
{

shared float Ads[TILE SIZE][TILE SIZE];
shared float Bds[TILE SIZE][TILE SIZE];

int tx = threadIdx.x;
int ty = threadIdx.y;
int i = blockIdx.x ∗ TILE SIZE + tx;
int k = blockIdx.y ∗ TILE SIZE + ty;
for( int m=0; m < n/TILE SIZE; m++) {

Ads[tx ][ ty ] = Ad[ i∗n + m∗TILE SIZE+ty];
Bds[tx ][ ty ] = Bd[ (m∗TILE SIZE+tx)∗n + k];

/∗ perform matrix multiplication on shared tiles ∗/

M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication – with Tiles

/∗ (cont.) ∗/
for( int m=0; m < n/TILE SIZE; m++) {

Ads[tx ][ ty ] = Ad[ i∗n + m∗TILE SIZE+ty];
Bds[tx ][ ty ] = Bd[ (m∗TILE SIZE+tx)∗n + k];

syncthreads();
/∗ perform matrix multiplication on shared tiles ∗/
for( int j=0; j<TILE SIZE; j++)

Celem += Ads[tx][j]∗Bds[j ][ ty ];

syncthreads();
};
Cd[i∗n+k] += Celem;

}
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A Note on Synchronisation

Barrier synchronisation in CUDA:

• not all threads of a thread block necessarily executed in parallel
(remember, e.g., fast switching between different task groups)

• between parallel/collective reads and subsequent writes
⇒ barrier required for all threads within a thread block:

syncthreads();

• all threads need to execute (or not) the same(!) call to
syncthreads()

• threads of the same block scheduled to the same hardware unit
• in contrast: no synchronisation features for threads in a grid
→ reason: transparent scheduling of entire blocks

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences, 27



Technische Universität München

Updated Performance Estimate

• at start, each thread loads one matrix element from global
memory

• shared memory→ no further loads in TILE SIZE m-iterations
• we reduce the memory transfer from global memory to

1/TILE SIZE
• for TILE SIZE = 16: new performance limit at 640GFlop/s
→ we’ve eliminated a major bottleneck, but apparently hit another

. . .

Experiment: profiling of tiled matrix multiplication kernel
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Part III

Hardware-Aware Programming
with CUDA:

Threads, Warps, and Coalesced
Access

M. Bader, A. Breuer: Parallel Computing on GPUs
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Thread Assignment and Thread Scheduling

CUDA programming model:
• 2D grid of 3D blocks
• blocks are scheduled to execution resources (block-by-block;

parallel, if possible)

CUDA hardware:
• cores (streaming processors, SP) organised into streaming

multiprocessors (SM)
• multiple blocks can be simultaneously assigned to an SM

Thread Scheduling:
• threads of a block are sub-divided into warps (32 threads)
• warps are scheduled to SMs; threads in a warp are executed in

SIMT (single instruction, multiple thread) fashion

M. Bader, A. Breuer: Parallel Computing on GPUs
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Coalesced Memory Access

Hardware issues in memory access:
• DRAM (i.e., global memory) built, such that multiple contiguous

memory slots are read together (compare: cache lines)
• in CUDA: memory access of threads will be simultaneous by all

threads in a warp
• if accesses are to contiguous memory locations (in the order

given by the thread ID) and 16-word-aligned
⇒ coalesced memory access

• coalesced memory access required to achieve full memory
bandwidth

M. Bader, A. Breuer: Parallel Computing on GPUs
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Coalesced Access in Matrix Multiplication

Copy matrix tile m from global into shared memory:

Ads[tx ][ ty ] = Ad[ i∗n + m∗TILE SIZE+ty];
Bds[tx ][ ty ] = Bd[ (m∗TILE SIZE+tx)∗n + k];

syncthreads();

Do we have coalesced memory access?
• row computation: i = blockIdx.x ∗ TILE SIZE + tx
• column computation: k = blockIdx.y ∗ TILE SIZE + ty
⇒ stride-1 access w.r.t. ty, stride-n access w.r.t. tx

Question: which threads are combined in a warp?

M. Bader, A. Breuer: Parallel Computing on GPUs
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Warps and Coalesced Access

Combination of threads into warps:
• 1D thread block: thread 0, . . . 31 into warp 0; thread 32, . . . 63

into warp 1; etc.
• 2D thread block: x-dimension is “faster-running”; e.g.:

• dimBlock(8,8,1), i.e., 64 threads (2 warps)
• then threads (0,0), . . . , (7,3) are in warp 0

and threads (0,4), . . . , (7,7) are in warp 1
• 3D thread block: x, then y, then z

Tile-Copying in Matrix Multiplication:
• threads with consecutive tx value in one warp
• leads to stride-n access⇒ not coalesced

M. Bader, A. Breuer: Parallel Computing on GPUs
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Matrix Multiplication with Coalesced Access

Switch tx and ty⇒ stride-1 (coalesced) access to Ad, Bd:

int i = blockIdx.y ∗ TILE SIZE + ty;
int k = blockIdx.x ∗ TILE SIZE + tx;
float Celem = 0;
for( int m=0; m < n/TILE SIZE; m++) {

Ads[ty ][ tx ] = Ad[ i∗n + m∗TILE SIZE+tx];
Bds[ty ][ tx ] = Bd[ (m∗TILE SIZE+ty)∗n + k];

syncthreads();
for( int j=0; j<TILE SIZE; j++)

Celem += Ads[ty][j]∗Bds[j ][ tx ];
syncthreads();

};
Cd[i∗n+k] += Celem;

Experiment: profiling of “coalesced” matrix multiplication kernel

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences, 34



Technische Universität München

Memory Latency for Tile Transfers

Recapitulate tiled matrix multiplication:
• tiles of 16× 16 matrix elements
→ 162 = 256 threads per tile (also per thread block)

• thus: 8 warps (32 threads each)
• examine load operation for matrix tiles

Ads[ty ][ tx ] = Ad[ i∗n + m∗TILE SIZE+tx];
Bds[ty ][ tx ] = Bd[ (m∗TILE SIZE+ty)∗n + k];

syncthreads();

→ delay due to memory latency
• all threads in a warp wait for data to arrive
• but another warp can be scheduled to work

Question: are there enough warps to hide latency?
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Tiled Matrix Multiplication with Prefetching

Include prefetching of blocks to reduce “idle” time for memory
transfer:

1. load first tile into register(s)
2. copy register(s) to shared memory
3. load next tile into register(s)
4. compute current tile
5. proceed with 2 (if there are more tiles)
6. compute last tile

(see code example)

Experiment: profiling of “prefetching” matrix multiplication kernel
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Use of Registers

How many registers do we actually need?
• two registers per thread→ 512 registers per block
• GTX 285: each SM has 1024 thread slots
⇒ 4 blocks can be run in parallel

• hence, we require 2024 additional registers

How many registers are there?
• GTX 285: 8192 registers for each SM
• dynamical partitioning of registers to blocks/threads
• assume that a multiplication kernel requires 10 registers:

10 · 162 = 2560 registers per block
⇒ only 3 blocks can run
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Dynamic Partitioning of Resources

Limits for execution of threads (for NVS 4200M)
• threads per block (1024)
• blocks per SM (8)
• thread slots per SM (1024)
• registers per SM (32768)
• padding of warps (blocks per warp not a multiple of 32)

Leads to trade-offs for performance:
• limited number of threads reduces parallelism (and, thus,

achievable performance)
• “performance cliffs”: slight change in set-up might lead to jumps

in available blocks
• requires detailed estimates (or lots of testing?) to determine best

option
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Towards High-Performance Matrix Multiplication

More Options for Optimisation:
• loop unrolling (save loop instructions and address arithmetics)
• thread granularity: compute 1× 2 or 1× 4 blocks per thread

(requires to load Ads or Bds only once)
• how do different optimisations interact with resource limitations

(available registers, etc.)
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Thread Execution – SIMT

“Single Instruction, Multiple Thread”:

• hardware executes same instruction for all threads in a warp
• execution of if-else-statements:

• first, execute if-branch (for part of the threads)
• then, execute else-branch (for all other threads)

• “diverging” thread execution; similar: for- and while-loops

Exercise: Maximum Reduction

• task: parallel computation of the maximum
• reduction operation via “binary fan-in”
• how can diverging threads be avoided?
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Maximum Search – Parallel Reduction

Classical approach: “Binary Fan-In”

53 84 7 9 6 10

7 9 6

9 10

10

10
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Maximum Search – Parallel Reduction (2)

Alternative approach for “Binary Fan-In”

53 84 7 9 6 10

7

9

10

1069

10

M. Bader, A. Breuer: Parallel Computing on GPUs

Gene Golub SIAM Summer School 2012 – Simulation and Supercomputing in the Geosciences, 42



Technische Universität München

“Binary Fan-In” and Warps

Alternative 1 on GPU:

53 84 7 9 6 10

7 9 6

9 10

10

10

• in-place computation:
“local” maxima overwrite data

• with warps:
no control on sequence of updates

Alternative 2 on GPU:
53 84 7 9 6 10

7

9

10

1069

10

• in-place computation and
synchronisatzion of warps
no longer critical, but:

• strided access within warps:
→ idle threads/“thread divergence”
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Maximum Search – “Binary Fan-In” for GPUs

53 84 7 9 6 10

10

91075

910

“Contiguous” threads (of a warp) access contiguous memory cells!
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Maximum Computation on the GPU

Basic Implementation:

global
void kernelMaximum(float∗ h, int size) {

/∗−− size has to be a power of 2 and smaller than 512/1024 −−∗/
int tx = threadIdx.x;
for ( int i=size/2; i>0; i=i /2) {

syncthreads();
if ( tx < i ) {

if ( h[tx ] < h[tx+i ] ) h[tx ] = h[tx+i ];
};

};
}
/∗−− kernel call : −−∗/
dim3 dimBlock(threads); // 1D thread block
kernelMaximum<<<dimGrid,dimBlock>>>(h,threads);
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Maximum on the GPU
Towards Optimized Implementations

Further steps to consider:

• extend for larger thread blocks (multiple kernel calls, e.g.)
• perform reduction in shared memory

(copy/reduce to shared memory in first step)
 perhaps a version that does not overwrite the original array . . .

• unrolling of loops, optimize for specific thread block sizes

Reference and optimized kernel:
M. Harris: Optimizing Parallel Reduction in CUDA (NVIDIA tutorial)
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
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Part IV

GPU Computing:
A Call to Arms?
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What We Did Not Cover . . .
Other programming models:

• OpenCL: programming model/language for hybrid computing;
backends for GPUs and CPUs
→ short code example (Ch. Dittrich):

queue.enqueueNDRangeKernel(shallowWatersEulerTimeStepKernel,
cl :: NullRange, cl ::NDRange(MATRIX SIZE, MATRIX SIZE),
cl :: NDRange(TILE SIZE, TILE SIZE), 0, &e );

• OpenACC: compiler directives to specify loops/parallel code that
can be offloaded to accelerator hardware→ short code example
(source: NVIDIA):

!$acc parallel loop
do i=0, n−1

!−−> loop body skipped
end do

!$acc end parallel loop
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What We Did Not Cover . . .

Other programming models (cont.):

• ArBB: (Intel Array Building Blocks, unfortunately deprecated . . . )
→ short code example (D. Gudu):

void eulerTimestep map(
arbb::f32& h, arbb::f32& hu, arbb::f32& hv,
/∗−− further parameters −−∗/ ) {
hu = arbb::select(h<1e−05f, 0.0f,

hu − dt ∗( (Fhu−neighbor(Fhu,0,−1))/dx
+ (Ghu−neighbor(Ghu,−1,0))/dy + Bx/dx ));

}
/∗−− corresp. kernel call : −−∗/
arbb::map(eulerTimestep map)(arbb h, arbb hu, arbb hv, /∗−− −−∗/);

 better vectorization of code
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A List of Further “Usual Suspects”

Further parallel programming models/languages in HPC:
• MPI, OpenMP are still around . . .
• PGAS languages (“partitioned global address space”): Unified

parallel C, Coarray Fortran, Chapel, Titanium, X10, . . .
• Intel Parallel Building Blocks (TBB, Cilk, Array Notations, . . . )

and #pragma simd constructs

The Quest for the Future Parallel Programming Model

• MPI will probably stay for quite some time . . .
• MPI+X to replace MPI+OpenMP for hybrid parallelization?
• extensions of C/C++/Fortran: not clear which exactly, but there

will certainly be some . . .
• guaranteed: you need to program/think in parallel
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Twelve Ways to Fool the Masses

(selection)
• Quote only 32-bit performance results, not 64-bit results.

→ single precision on the GPU, double precision on the
CPU??

• Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.

→ did you include the transfer time from/to GPU?
• Compare your results against scalar, unoptimized code on Crays

→ compare optimized GPU code
with non-optimized CPU code

Source: D. H. Baily: Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers, Supercomputing Review, 1991
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Twelve Ways to Fool the Masses (2)

(continued)
• When direct run time comparisons are required, compare with an

old code on an obsolete system
→ compare performance on the latest GPU

with a single-core CPU??
• Quote performance in terms of processor utilization, parallel

speedups or MFLOPS per dollar
→ MFLOPS per Watt!!

• Mutilate the algorithm used in the parallel implementation to
match the architecture

→ Gauß-Seidel on GPU vs. Multigrid on CPU??
• If all else fails, show pretty pictures and animated videos, and

don’t talk about performance
→Well, that’s more or less what we did :-)
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