measuring Statistical Dependence with Hilbert-Schmidt Norm
"Hilbert-Schmist Norm of the Cross-Covariance operator" is proposed as an independence criterion in reproducing kernel Hilbert spaces (RKHSs). The measure is refereed to as Hilbert-Schmidt Independence Criterion, or HSIC. An empirical estimate of this measure is introduced which may be well used in many practical application such as independent Component Analysis (ICA), Maximum Variance Unfolding (MVU), feature extraction, feature selection, ... .
Introduction
In this article, a criterion is introduced which is used to measure the dependence between two multivariate random variables. More specifically, we are looking for an appropriate function of two random variables whose output is zero if the involving random variables are independent and achieves a high value if they are statistically dependent.
If instead of "independence" we were looking for "uncorrelation" the situation would be much easier to handle. Because "correlation" of two random variables involves only expected values, as opposed to concept of independence between two random variables.
However, fortunately, based on the following theorem we still can effectively tackle the problem of independence between two random variables:
Theorem: Two random variables [math]\displaystyle{ \,\!x }[/math] and [math]\displaystyle{ \,\!y }[/math] are independent if and only if any bounded continuous function of the two random variables are uncorrelated. (have zero covariance).
For example, for random variables [math]\displaystyle{ \,\!x }[/math] and [math]\displaystyle{ \,\!y }[/math] to be independent, all pairs [math]\displaystyle{ (x,y),\, (x^2,y),\,(x,e^y), \,(\sin(x),\log(y)),\, ... }[/math] have to be uncorrelated. That is why we need to deal with functions of random variables when examining the independence property. and That is why Hilbert spaces and concepts from "Functional Analysis" are involved in this article (Of course, no one likes to torture him/herself by using complicated mathematical expressions ;)).
How the rest of this note is organized
In the following, we first give an introductory note on the concepts from functional analysis and Hilbert spaces required in this paper. (No prior knowledge of these concepts is assumed here). Then we introduce the independence measure, namely, Hilbert-Schmidt Independence Criterion and explain why we expect it to work properly. Thirdly, we introduce an statistics which may be used to estimate the HSIC and discuss its convergence behavior. Finally, through some examples, we demonstrate how this criterion may be effectively employed to solve many well-known problems.
Simple introduction to Reproducing Kernel Hilbert Spaces
Basic concepts
Let [math]\displaystyle{ \mathcal{F} }[/math] denote the set containing all real-valued functions defined on domain [math]\displaystyle{ \,\!\mathcal{X} }[/math]. By real-valued, we mean the output of these functions is always a real number. (Note that this definition makes good sense considering the methodology mentioned in the previous section.) We may note that this space is linear, as for any [math]\displaystyle{ f,g\in\mathcal{F} }[/math] and [math]\displaystyle{ a,b\in\mathbb{R} }[/math], [math]\displaystyle{ \,\!af+bg }[/math] will be a member of [math]\displaystyle{ \mathcal{F} }[/math], as well. On the other hand, we may define the concept of real-valued inner product between the elements of [math]\displaystyle{ \mathcal{F} }[/math]. The simplest way to do that probably is the familiar:
[math]\displaystyle{ \langle a,b\rangle=\int_{}^{}{f(t)g(t)dt} }[/math]
However, other definitions for the inner product is also possible. The only required conditions is that:
1. [math]\displaystyle{ \langle f,f\rangle\geq0,\,\forall\, f\in\mathcal{F} }[/math] with [math]\displaystyle{ \langle f,f\rangle=0 }[/math] iff [math]\displaystyle{ \,\!f=0 }[/math].
2. [math]\displaystyle{ \langle f,g\rangle=\langle g,f\rangle,\, \forall \,f,g\in \mathcal{F} }[/math].
3. [math]\displaystyle{ \langle af+bg,h\rangle=a\langle f,h\rangle+b\langle g,h\rangle,\,\forall\,f,g,h\in\mathcal{F} }[/math] and all real [math]\displaystyle{ \,\!a }[/math] and [math]\displaystyle{ \,\!b }[/math].
Endowed with the concept of inner product, the set [math]\displaystyle{ \mathcal{F} }[/math] here is, in fact, a Hilbert space. In general, a Hilbert space is a (complete) linear space endowed with an inner product defined on the elements with the above properties. However, in this article we only deal with those Hilbert spaces whose elements are real-valued functions on [math]\displaystyle{ \mathcal{X} }[/math].
A mapping from the Hilbert space to [math]\displaystyle{ \mathbb{R} }[/math] is called a functional. A functional is called linear if the underlying mapping is linear, i.e.:
[math]\displaystyle{ L:\mathcal{F}\rightarrow \mathbb{R} }[/math].
[math]\displaystyle{ \,\!L(af+bg)=aL(f)+bL(g) }[/math]
for all [math]\displaystyle{ \,\!f }[/math] and [math]\displaystyle{ \,\!g }[/math] in [math]\displaystyle{ \mathcal{F} }[/math] and all real [math]\displaystyle{ \,\!a }[/math] and [math]\displaystyle{ \,\!b }[/math]. A simple (and yet very important) example of a functional is a function which gets an element of [math]\displaystyle{ \mathcal{F} }[/math] (which is a real-valued function on [math]\displaystyle{ \mathcal{X} }[/math]) as input and returns its value at a specific fixed point [math]\displaystyle{ \,\!x }[/math]. This functional is called Dirac evaluation functional and is denoted by [math]\displaystyle{ \delta_x:\mathcal{F} \rightarrow \mathbb{R} }[/math]. Thus we have [math]\displaystyle{ \,\!\delta_x(f)=f(x) }[/math]. It can be easily seen that [math]\displaystyle{ \,\!\delta_x }[/math] is a linear functional.
There is theorem on linear functionals named "Riesz representation Theorem" which plays a key role in functional analysis:
Theorem (Riesz representation): If [math]\displaystyle{ \,\!L }[/math] is a bounded linear functional on a Hilbert space [math]\displaystyle{ \mathcal{F} }[/math], then there exists a unique element [math]\displaystyle{ \,\!h_f }[/math] in [math]\displaystyle{ \mathcal{F} }[/math] such that [math]\displaystyle{ L(f)=\langle f,h_f\rangle }[/math] for all [math]\displaystyle{ \,\!f }[/math] in [math]\displaystyle{ \mathcal{F} }[/math].
As mentioned above, [math]\displaystyle{ \,\!\delta_x }[/math] is linear functional and thus according to Riesz theorem there is an element of [math]\displaystyle{ \mathcal{F} }[/math], denoted by [math]\displaystyle{ \,\!k_x }[/math] such that:
[math]\displaystyle{ \delta_x(f)=f(x)=\langle f,k_x\rangle }[/math] for all [math]\displaystyle{ f\in\mathcal{F} }[/math].
Reproducing Kernel Hilbert Spaces (RKHS)
Reproducing Kernel Hilbert Spaces are a subtype of Hilbert spaces introduced above. A Hilbert space is a RKHS if for all [math]\displaystyle{ x\in \mathcal{X} }[/math], the corresponding Dirac evaluation operator [math]\displaystyle{ \delta_x:\mathcal{F} \rightarrow \mathbb{R} }[/math] is a continuous linear functional. Based on this, Reproducing Kernel Hilbert Spaces, in fact, represent a family of Hilbert spaces with smooth real-valued functions as their elements.
To every RKHS we may assign a symmetric positive definite function [math]\displaystyle{ k:\,\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R} }[/math], named kernel. The kernel function is defined as:
[math]\displaystyle{ \,\!k(x,y):=k_x(y) }[/math]
It is not hard to see that:
[math]\displaystyle{ k(x,y)=k_x(y)=\langle k_x,k_y\rangle }[/math]
It may be shown that there is a unique correspondence between a RKHS and its kernel. In other words, given a Hilbert space, its kernel function would be identified uniquely; and inversely, if [math]\displaystyle{ \,\!k }[/math] is symmetric positive definite function of the form [math]\displaystyle{ k:\mathcal{X}\times \mathcal{X}\rightarrow \mathbb{R} }[/math], then there is a unique Hilbert space of functions on [math]\displaystyle{ \mathcal{X} }[/math] for which [math]\displaystyle{ \,\!k }[/math] is a reproducing kernel.
The elements of the RKHSs we consider here are always the same, i.e., the smooth real-valued functions on a set [math]\displaystyle{ \mathcal{X} }[/math]. However, they may have different inner products defined and thus different types of kernels.
The independence measure
Now we turn our attention back to the the problem of measuring independence between two (generally multivariate) random variables [math]\displaystyle{ \,\!x }[/math] and [math]\displaystyle{ \,\!y }[/math]. Induced by the idea described in the introduction section, we define RKHS [math]\displaystyle{ \mathcal{F} }[/math] from [math]\displaystyle{ \mathcal{X} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math] containing all continuous bounded real-valued functions of [math]\displaystyle{ \,\!x }[/math], and RKHS [math]\displaystyle{ \mathcal{G} }[/math] from [math]\displaystyle{ \mathcal{Y} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math] containing all continuous bounded real-valued functions of [math]\displaystyle{ \,\!y }[/math]. Here, [math]\displaystyle{ \mathcal{X} }[/math] and [math]\displaystyle{ \mathcal{Y} }[/math] denotes the support (set of possible values) of random variables [math]\displaystyle{ \,\!x }[/math] and [math]\displaystyle{ \,\!y }[/math] respectively. As mentioned before, we are particularly interested in the cross-covariance between elements of [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math]:
[math]\displaystyle{ \text{cov}(f(x),g(y))=\mathbf{E}_{x,y}[f(x)g(y)]-\mathbf{E}_{x}[f(x)]\mathbf{E}_{y}[g(y)] }[/math]
In functional Analysis, an operator is a name given to elements from one Hilbert space to elements of the other one. It may be shown that there exist a unique operator [math]\displaystyle{ C_{x,y} }[/math] mapping elements of [math]\displaystyle{ \mathcal{F} }[/math] to elements of [math]\displaystyle{ \mathcal{G} }[/math] such that:
[math]\displaystyle{ \langle f,C_{x,y}(g)\rangle=\text{cov}(f,g) }[/math]
for all [math]\displaystyle{ f\in \mathcal{F} }[/math] and [math]\displaystyle{ g\in \mathcal{G} }[/math]. This operator is called Cross-covariance operator.
We may define the concept of norm for an operator. For example, consider an operator in the form of a matrix [math]\displaystyle{ C_{m\times n} }[/math] mapping vectors [math]\displaystyle{ n\times 1 }[/math] in [math]\displaystyle{ \mathbb{R}^n }[/math] to vectors [math]\displaystyle{ m\times 1 }[/math] in [math]\displaystyle{ \mathbb{R}^m }[/math]. Then the Frobenius norm of this matrix may be defined as the norm of the corresponding operator.
There are different norms defined for operators. One of them is called Hilbert-Schmidt (HS) norm and is defined as follows:
[math]\displaystyle{ \|C\|^2_{HS}:=\sum_{i,j}\langle Cv_i,u_j \rangle^2_{\mathcal{F}} }[/math]
where [math]\displaystyle{ \,\!u_j }[/math] and [math]\displaystyle{ \,\!v_i }[/math] are orthogonal bases of [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math], respectively. It is easy to see that the Frobenius norm on matrices may be considered a spacial case of this norm.
Now, we are in a position to define our measure for dependence of two random variables. The measure is the "Hilbert-Schmidt norm of the cross-covariance operator":
[math]\displaystyle{ \text{HSIC}(p_{xy},\mathcal{F},\mathcal{G}):=\|C_{xy}\|^2_{HS} }[/math]
RKHS Theory
Let [math]\displaystyle{ \mathcal{F} }[/math] be a Hilbert space from [math]\displaystyle{ \mathcal{X} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. We assume [math]\displaystyle{ \mathcal{F} }[/math] is a Reproducing Kernel Hilbert Space,i.e., for all [math]\displaystyle{ x\in \mathcal{X} }[/math], the corresponding Dirac evaluation operator [math]\displaystyle{ \delta_x:\mathcal{F} \rightarrow \mathbb{R} }[/math] is a bounded (or equivalently continuous) linear functional. We denote the kernel of this operator by [math]\displaystyle{ k(x,x')=\langle \phi(x)\phi(x') \rangle_{\mathcal{F}} }[/math] where [math]\displaystyle{ k:\mathcal{X}\times \mathcal{X}\rightarrow \mathbb{R} }[/math] is a positive definite function and [math]\displaystyle{ \,\!\phi }[/math] is the feature map of [math]\displaystyle{ \mathcal{F} }[/math]. Similarly, we consider another RKHS named [math]\displaystyle{ \mathcal{G} }[/math] with Domain [math]\displaystyle{ \mathcal{Y} }[/math], kernel [math]\displaystyle{ l(\cdot,\cdot) }[/math] and feature map [math]\displaystyle{ \,\!\psi }[/math]. We assume both [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math] are separable, i.e., they have a complete orthogonal bases.
Hilbert-Schmidt Norm
For a linear operator [math]\displaystyle{ C:\mathcal{G}\rightarrow \mathcal{F} }[/math], provided the sum converges, the Hilbert-Schmidt (HS) norm is defined as:
[math]\displaystyle{ \|C\|^2_{HS}:=\sum_{i,j}\langle Cv_i,u_j \rangle^2_{\mathcal{F}} }[/math]
where [math]\displaystyle{ \,\!u_j }[/math] and [math]\displaystyle{ \,\!v_i }[/math] are orthogonal bases of [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math], respectively. It is easy to see that the Frobenius norm on matrices may be considered a spacial case of this norm.
Hilbert-Schmidt Operator
A Hilbert-Schmidt Operator is a linear operator for which the Hilbert-Schmidt norm (introduced above) exists.
Tensor Product Operator
We may employ any [math]\displaystyle{ f\in \mathcal{F} }[/math] and [math]\displaystyle{ g\in \mathcal{G} }[/math] to define a tensor product operator [math]\displaystyle{ f\otimes g:\mathcal{G}\rightarrow\mathcal{F} }[/math] as follows:
[math]\displaystyle{ (f\otimes g)h:=f\langle g,h\rangle_{\mathcal{G}} \quad }[/math] for all [math]\displaystyle{ h\in\mathcal{G} }[/math]
Using the definition of HS norm introduced above, we can simply show the norm of [math]\displaystyle{ f\otimes g }[/math] equals
[math]\displaystyle{ \|f\otimes g\|^2_{HS}=\|f\|^2_{\mathcal{F}}\; \|g\|^2_{\mathcal{G}} }[/math]
Cross-Covariance Operator
Mean
Mean elements of [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math] are defined as those elements of these spaces for which
[math]\displaystyle{ \langle\mu_x,f \rangle_{\mathcal{F}}=\mathbf{E}_x[\langle\phi(x),f \rangle_{\mathcal{F}}]=\mathbf{E}_x[f(x)] }[/math]
[math]\displaystyle{ \langle\mu_y,g \rangle_{\mathcal{G}}=\mathbf{E}_y[\langle\psi(y),g \rangle_{\mathcal{G}}]=\mathbf{E}_y[g(x)] }[/math]
Based on this, [math]\displaystyle{ \|\mu_x\|^2_{\mathcal{F}} }[/math] may be calculated by applying expectation twice as follows:
[math]\displaystyle{ \|\mu_x\|^2_{\mathcal{F}}=\mathbf{E}_{x,x'}[\langle \phi(x),\phi(x')\rangle_{\mathcal{F}}]=\mathbf{E}_{x,x'}[k(x,x')] }[/math]
Cross-covariance Operator
Now we are in aposition to define the cross-covariance operator as follows
[math]\displaystyle{ C_{xy}:=\underbrace{\mathbf{E}_{x,y}[\phi(x)\otimes\psi(y)]}_{:=\tilde{C}_{xy}}-\underbrace{\mu_x\otimes\mu_y}_{:=M_{xy}} }[/math]
We will use [math]\displaystyle{ \tilde{C}_{xy} }[/math] and [math]\displaystyle{ \,\!M_{xy} }[/math] as the basis of our measure of dependence.
Hilbert-Schmidt Independence Criterion
Definition (HSIC) Given separable RKHSs [math]\displaystyle{ \mathcal{F} }[/math], [math]\displaystyle{ \mathcal{G} }[/math] and a joint probability [math]\displaystyle{ p_{x\,\!y} }[/math], we define the Hilbert-Schmidt Independence Criterion(HSIC) as the squared HS-norm of the associated cross-covariance operator [math]\displaystyle{ C_{x\,\!y} }[/math]
[math]\displaystyle{ \text{HSIC}(p_{xy},\mathcal{F},\mathcal{G}):=\|C_{xy}\|^2_{HS} }[/math]
HSIC in terms of kernels
To compute HSIC we need to express it in terms of kernel functions. It can be shown that this can be achieved via the following identity:
[math]\displaystyle{ \text{HSIC}(p_{xy},\mathcal{F},\mathcal{G})=\mathbf{E}_{x,x',y,y'}[k(x,x')l(y,y')]+\mathbf{E}_{x,x'}[k(x,x')]\mathbf{E}_{y,y'}[l(y,y')]-2\mathbf{E}_{x,y}[\mathbf{E}_{x'}[k(x,x')]\mathbf{E}_{y'}[l(y,y')]] }[/math]
Because the data is random, the kernels are random so we use expected values.
Related work
One of the methods to find dependence between functions in RKHS, as proposed by Gretton et al ,the constarined covariance (COCO) was to use the largest singular value of the cross-covariance operator, which behaves identically to the correlation operator at independence and no regularization is required.
In this paper, the concept of COCO is extended by using the entire spectrum of the cross-covariance operator to determine when all its singular values are zero, rather than looking only at the largest singular value.
More detiled explanation
The above theorem shows that correlation can be used to study independence. In other words, for two random variables [math]\displaystyle{ X \, }[/math] and [math]\displaystyle{ Y \, }[/math], the functional correlation operator (the word functional here refers to the fact that the correlation is computed between a function of X and a function of Y, instead of between X and Y) sheds light on whether [math]\displaystyle{ X \, }[/math] and [math]\displaystyle{ Y \, }[/math] are independent (or how independent they are). Similarly, the functional cross-covariance operator also gives us information about the degree of dependence between [math]\displaystyle{ X \, }[/math] and [math]\displaystyle{ Y \, }[/math].
Below are some examples of how the functional correlation operator and the functional cross-covariance operator used as a statistics to test independence. For easier reading we will omit the word functional in the following examples; readers should keep in mind that the operators indeed act on functions of the random variables.
Kernel Canonical Correlation(KCC)
In this approach, a regularized correlation operator is derived from the covariance operator of [math]\displaystyle{ X \, }[/math], the covariance operator of [math]\displaystyle{ Y \, }[/math] and the cross-covariance operator between [math]\displaystyle{ X \, }[/math] and [math]\displaystyle{ Y \, }[/math].
Constrained Covariance (COCO)
In this approach, the largest singular value of the cross-covariance operator is used to test independence. Compared to KCC, this method has the advantage that no regularization is needed.
This paper (HSIC)
The paper is indeed an extension of COCO, in the sense that the paper looks at the entire spectrum of the cross-covariance operator to determine whether all its singular values are zero, instead of looking at only the largest singular value, which is what COCO does. It is thus intuitively obvious that a more robust indication of independence than COCO can be obtained. More specifically, the measure of independence is the sum of the squared singular values of the cross-covariance operator(its squared Hilbert-Schmidt norm), which the authors termed HSIC(Hilbert Schmidt Independence Criterion).
Empirical Criterion
Definition (Empirical HSIC)
Let [math]\displaystyle{ Z:=\{(x_1,y_1),\cdots,(x_m,y_m)\}\subseteq \mathcal{X}\times\mathcal{Y} }[/math] be a series of [math]\displaystyle{ \,\!m }[/math] independent observations drawn from [math]\displaystyle{ p_{x\,\!y} }[/math]. An estimator of HSIC, is given by
[math]\displaystyle{ \text{HSIC}(Z,\mathcal{F},\mathcal{G}):=(m-1)^{-2}\textbf{tr}(KHLH) }[/math]
where [math]\displaystyle{ H, K, L\in\mathbb{R}^{m\times m}, K_{ij}:=k(x_i,x_j), L_{ij}:=l(y_i,y_j) \,\, \text{and} \, \, H_{ij}:=\delta_{ij}-m^{-1} }[/math].
Bias of Estimator
It may bee shown that the bias of the above empirical estimation is of the order [math]\displaystyle{ \,\!O(m^{-1}) }[/math]:
Theorem: Let [math]\displaystyle{ \mathbf{E}_Z }[/math] denote the expectation taken over [math]\displaystyle{ \,\!m }[/math] independent copies [math]\displaystyle{ \,\!(x_i,y_i) }[/math] drawn from [math]\displaystyle{ p_{\,\!xy} }[/math]. Then
[math]\displaystyle{ \text{HSIC}(p_{xy},\mathcal{F},\mathcal{G})=\mathbf{E}_Z[\text{HSIC}(Z,\mathcal{F},\mathcal{G})]+O(m^{-1}) }[/math].
Bound on Empirical HSIC
Theorem: Assume that [math]\displaystyle{ \,\!k }[/math] and [math]\displaystyle{ \,\!l }[/math] are bounded almost everywhere by 1, and are non-negative. Then for [math]\displaystyle{ \,\!m\gt 1 }[/math] and all [math]\displaystyle{ \,\!\delta\gt 0 }[/math], with probablity at least [math]\displaystyle{ \,\!1-\delta }[/math], for all [math]\displaystyle{ \,\!p_{xy} }[/math] :
[math]\displaystyle{ |\text{HSIC}(p_{xy},\mathcal{F},\mathcal{G})-\text{HSIC}(Z,\mathcal{F},\mathcal{G})|\leq\sqrt{\frac{log(6/\delta)}{\alpha^2m}}+\frac{C}{m} }[/math]
where [math]\displaystyle{ \,\!\alpha\gt 0.24 }[/math] and [math]\displaystyle{ \,\!C }[/math] are constants.
Independence Test using HSIC
Theorem: Denote by [math]\displaystyle{ \mathcal{F} }[/math], [math]\displaystyle{ \mathcal{G} }[/math] RKHSs with universal
kernels [math]\displaystyle{ \,\!k }[/math], [math]\displaystyle{ \,\!l }[/math] on the compact domains [math]\displaystyle{ \mathcal{X} }[/math] and [math]\displaystyle{ \mathcal{Y} }[/math] respectively. We assume without
loss of generality that [math]\displaystyle{ \|f\|_{\infty}\leq 1 }[/math] and [math]\displaystyle{ \|g\|_{\infty}\leq 1 }[/math] for all [math]\displaystyle{ f \in \mathcal{F} }[/math] and [math]\displaystyle{ g \in \mathcal{G} }[/math]. Then
[math]\displaystyle{ \|C_{xy}\|_{HS} =0 }[/math] if and only if [math]\displaystyle{ \,\!x }[/math] and [math]\displaystyle{ \,\!y }[/math] are independent.
Based on this result, to maximize the dependence between two kernels we need to increase the value of the empirical estimate, i.e., [math]\displaystyle{ \,\!\textbf{tr}(KHLH) }[/math].
It can be shown that if even one of the kernels [math]\displaystyle{ \,\!K }[/math] or [math]\displaystyle{ \,\!L }[/math] is already centered, we may drop the centering matrices [math]\displaystyle{ \,\!H }[/math] and simply use the objective function [math]\displaystyle{ \,\!\textbf{tr}(KL) }[/math].
Kernel Canonical Correlation Analysis (CCA)
In Classical CCA linear mapping [math]\displaystyle{ a^{T}X }[/math] and [math]\displaystyle{ b^{T}Y }[/math] are obtained, respectively for random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math], such that the linear projections have maximum correlation.
Kernel CCA extends this method to estimate functions [math]\displaystyle{ f\in \mathcal{F} }[/math] and [math]\displaystyle{ g\in \mathcal{G} }[/math] such that the correlation of [math]\displaystyle{ f(X) }[/math] and [math]\displaystyle{ g(Y) }[/math] is maximized.
to find [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math] the following optimization problem must be solved:
[math]\displaystyle{ max_{(f \in \mathcal{F} , g \in \mathcal{G})(f \neq 0 , g \neq 0)} \frac{Cov(f(x),g(Y))}{(Var(f(X))_{1/2} (Var(g(y))_{1/2}} }[/math]
For finite independent sample [math]\displaystyle{ {(X_{1},Y_{1}),(X_{2},Y_{2}),...,(X_{n},Y_{n})} }[/math] estimators for functions [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math] can be obtained by optimizing the empirical version of the optimization problem:
[math]\displaystyle{ max_{(f \in \mathcal{F} , g \in \mathcal{G})(f \neq 0 , g \neq 0)} \frac{\widehat{Cov}(f(x),g(Y))}{(\widehat{Var}(f(X)+\epsilon_{n}||f||_{\mathcal{F}}^{2})_{1/2} (\widehat{Var}(g(y)+\epsilon_{n}||g||_{\mathcal{G}}^{2})_{1/2}} }[/math]
for which:
[math]\displaystyle{ \widehat{Cov}(f(x),g(Y))= \frac {1}{n} \sum_{i=1}^{n} \left( f(X_{i})- \sum_{j=1}^{n}f(X_{j}) \right) \left( g(Y_{i})- \sum_{j=1}^{n}g(Y_{j}) \right) }[/math]
[math]\displaystyle{ \widehat{Var}(f(X))= \frac {1}{n} \sum_{i=1}^{n} \left( f(X_{i})- \sum_{j=1}^{n}f(X_{j}) \right)^{2} }[/math]
[math]\displaystyle{ \widehat{Var}(g(Y))= \frac {1}{n} \sum_{i=1}^{n} \left( g(Y_{i})- \sum_{j=1}^{n}g(Y_{j}) \right)^{2} }[/math]
Representation of Kernel CCA by Cross-Covariance Operator
Optimization problem for kernel CCA can be formulated using Cross-Covariance Operator for [math]\displaystyle{ (X,Y) }[/math]
[math]\displaystyle{ Sup_{(f \in \mathcal{F} , g \in \mathcal{G})} \langle g,\Sigma_{XY} f \rangle_{\mathcal{G}} }[/math] subject to [math]\displaystyle{ \langle f,\Sigma_{XX} f \rangle_{\mathcal{F}}=1 }[/math] and [math]\displaystyle{ \langle g,\Sigma_{YY} g \rangle_{\mathcal{G}}=1 }[/math]
Solution of this problem is the eigenfunction of the largest eigenvalue of the following eigenproblem
[math]\displaystyle{ \Sigma_{YX} f = \rho_{1} \Sigma_{YY} g }[/math]
[math]\displaystyle{ \Sigma_{YX} g = \rho_{1} \Sigma_{XX} f }[/math]