kernelized Sorting
Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure between classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of observations by means of the Hilbert Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.
Introduction
Problem Statement
Assume we are given two collections of documents purportedly covering the same content, written in two different languages. Can we determine the correspondence between these two sets of documents without using a dictionary?
Sorting and Matching
(Formal) problem formulation:
Given two sets of observations [math]\displaystyle{ X= \{ x_{1},..., x_{m} \}\subseteq \mathcal X }[/math] and [math]\displaystyle{ Y=\{ y_{1},..., y_{m}\}\subseteq \mathcal Y }[/math]
Find a permutation matrix [math]\displaystyle{ \pi \in \Pi_{m} }[/math],
[math]\displaystyle{ \Pi_{m}:= \{ \pi | \pi \in \{0,1\}^{m \times m} where \pi 1_{m}=1_{m}, \pi^{T}1_{m}=1_{m}\} }[/math]
such that [math]\displaystyle{ \{ (x_{i},y_{\pi (i)}) for 1 \leqslant i \leqslant m \} }[/math] is maximally dependent. Here [math]\displaystyle{ 1_{m} \in \mathbb{R}^{m} }[/math] is the vector of all ones.
Denote by [math]\displaystyle{ D(Z(\pi)) }[/math] a measure of the dependence between x and y, where [math]\displaystyle{ Z(\pi) := \{ (x_{i},y_{\pi (i)}) for 1 \leqslant i \leqslant m \} }[/math].
Then we define nonparametric sorting of X and Y as follows
[math]\displaystyle{ \pi^{\ast}:=argmax_{\pi \in \prod_{m}}D(Z(\pi)). }[/math]
Hilbert Schmidt Independence Criterion
Let sets of observations X and Y be drawn jointly from some probability distribution [math]\displaystyle{ Pr_{xy} }[/math]. The Hilbert Schmidt Independence Criterion (HSIC) measures the dependence between x and y by computing the norm of the cross-covariance operator over the domain [math]\displaystyle{ \mathcal X \times \mathcal Y }[/math] in Hilbert Space.
let [math]\displaystyle{ \mathcal {F} }[/math] be the Reproducing Kernel Hilbert Space (RKHS) on [math]\displaystyle{ \mathcal {X} }[/math] with associated kernel [math]\displaystyle{ k: \mathcal X \times \mathcal X \rightarrow \mathbb{R} }[/math] and feature map [math]\displaystyle{ \phi: \mathcal X \rightarrow \mathcal {F} }[/math]. Let [math]\displaystyle{ \mathcal {G} }[/math] be the RKHS on [math]\displaystyle{ \mathcal Y }[/math] with kernel [math]\displaystyle{ l }[/math] and feature map [math]\displaystyle{ \psi }[/math]. The cross-covariance operator [math]\displaystyle{ C_{xy}:\mathcal {G}\rightarrow \mathcal {F} }[/math] is defined by
[math]\displaystyle{ C_{xy}=\mathbb{E}_{xy}[(\phi(x)-\mu_{x})\otimes (\psi(y)-\mu_{y})], }[/math]
where [math]\displaystyle{ \mu_{x}=\mathbb{E}[\phi(x)] }[/math], [math]\displaystyle{ \mu_{y}=\mathbb{E}[\psi(y)] }[/math].
HSIC is the square of the Hilbert-Schmidt norm of the cross covariance operator [math]\displaystyle{ C_{xy} }[/math]
[math]\displaystyle{ D(\mathcal {F},\mathcal {G},Pr_{xy}):=\parallel C_{xy} \parallel_{HS}^{2}. }[/math]
In term of kernels, HSIC can be expressed as
[math]\displaystyle{ \mathbb{E}_{xx'yy'}[k(x,x')l(y,y')]+\mathbb{E}_{xx'}[k(x,x')]\mathbb{E}_{yy'}[l(y,y')]-2\mathbb{E}_{xy}[\mathbb{E}_{x'}[k(x,x')]\mathbb{E}_{y}[l(y,y')]]. }[/math]
where [math]\displaystyle{ \mathbb{E}_{xx'yy'} }[/math] is the expectation over both [math]\displaystyle{ (x, y) }[/math] ~ [math]\displaystyle{ Pr_{xy} }[/math] and an additional pair of variables [math]\displaystyle{ (x', y') }[/math] ~ [math]\displaystyle{ Pr_{xy} }[/math] drawn independently according to the same law.
A biased estimator of HSIC given finite sample [math]\displaystyle{ Z = \{(x_{i}, y_{i})\}_{i=1}^{m} }[/math] drawn from [math]\displaystyle{ Pr_{xy} }[/math] is
[math]\displaystyle{ D(\mathcal {F},\mathcal {G},Z)=(m-1)^{-2}tr HKHL = (m-1)^{-2} tr \bar{K}\bar{L} }[/math]
where [math]\displaystyle{ K,L\in \mathbb{R}^{m\times m} }[/math] are the kernel matrices for the data and the labels respectively, [math]\displaystyle{ H_{ij}=\delta_{ij}-m^{-1} }[/math] centers the data and the labels in feature space, [math]\displaystyle{ \bar{K}:=HKH }[/math] and [math]\displaystyle{ \bar{L}:=HLH }[/math] denote the centered versions [math]\displaystyle{ K }[/math] and [math]\displaystyle{ L }[/math] respectively.
Advantages of HSIC are:
Computing HSIC is simple: only the kernel matrices K and L are needed;
HSIC satisfies concentration of measure conditions, i.e. for random draws of observation from [math]\displaystyle{ Pr_{xy} }[/math], HSIC provides values which are very similar;
Incorporating prior knowledge into the dependence estimation can be done via kernels.
Kernelized Sorting
Kernelized Sorting
Optimization problem
[math]\displaystyle{ \pi^{\ast}=argmax_{\pi \in \Pi_{m}}[tr \bar{K} \pi^{T}\bar{L}\pi] }[/math]
Proof for this objectice function
Firstly, we need to establish [math]\displaystyle{ H }[/math] and [math]\displaystyle{ \pi }[/math] matrices commute.
Sorting as a special case
For scalar [math]\displaystyle{ x_{i} }[/math] and [math]\displaystyle{ y_{i} }[/math] and a linear kernel on both sets, we can rewrite the optimization problem [math]\displaystyle{ \pi^{\ast}=argmax_{\pi \in \Pi_{m}}[X^{T} \pi Y]^{2} }[/math]
This is maximized by sorting [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].
Diagonal Dominance
Replace the expectations by sums where no pairwise summation indices are identical. This leads to the objective function:
[math]\displaystyle{ \frac{1}{m(m-1)}\sum_{i\ne j}K_{ij}L_{ij}+\frac{1}{m^{2}(m-1)^{2}}\sum_{i\ne j,u\ne v}K_{ij}L_{uv}- \frac{2}{m(m-1)^2}\sum_{i,j\ne i,v\ne i}K_{ij}L_{iv} }[/math]
Using the [math]\displaystyle{ \bar{K}_{ij}=K_{ij}(1-\delta_{ij}) }[/math] and [math]\displaystyle{ \bar{L}_{ij}=L_{ij}(1-\delta_{ij}) }[/math] for kernel matrices where the main diagonal terms have been removed we arrive at the expression [math]\displaystyle{ (m-1)^{-1}tr H\bar{L}H\bar{K} }[/math].
Relaxation to a constrained eigenvalue problem
An approximate solution of the problem by solving
[math]\displaystyle{ \text{maximize}_{\eta} \left\{ \eta^{T}M\eta \right\} \text{subject to} A\eta=b }[/math]
Here the matrix [math]\displaystyle{ M=K\otimes L\in \mathbb{R}^{m^{2}\times{m^2}} }[/math] is given by the outer product of the constituting kernel matrices, [math]\displaystyle{ \eta \in \mathbb{R}^{m^2} }[/math] is a vectorized version of the permutation matrix [math]\displaystyle{ \pi }[/math], and the constraints imposed by [math]\displaystyle{ A }[/math] and [math]\displaystyle{ b }[/math] amount to the polytope constraints imposed by [math]\displaystyle{ \Pi_{m} }[/math].
Related Work
Mutual Information is defined as, [math]\displaystyle{ I(X,Y)=h(X)+h(Y)-h(X,Y) }[/math]. We can approximate MI maximization by maximizing its lower bound. This then corresponds to minimizing an upper bound on the joint entropy [math]\displaystyle{ h(X,Y) }[/math].
Optimization
[math]\displaystyle{ \pi^{\ast}=argmin_{\pi \in \Pi_{m}}|\log HJ(\pi)H|, }[/math]
where [math]\displaystyle{ J_{ij}=K_{ij}L_{\pi(i),\pi(j)} }[/math]. This is related to the optimization criterion proposed by Jebara(2004) in the context of aligning bags of observations by sorting via minimum volume PCA.
Multivariate Extensions
Let there be T random variables [math]\displaystyle{ x_i \in {\mathcal X}_i }[/math] which are jointly drawn from some distribution [math]\displaystyle{ p(x_1,...x_m) }[/math]. The expectation operator with respect to the joint distribution and with respect to the product of the marginals is given by
[math]\displaystyle{ \mathbb{E}_{x_1,...,x_T}[\prod_{i=1}^{T}k_{i}(x_{i},\cdot)] }[/math] and [math]\displaystyle{ \prod_{i=1}^{T}\mathbb{E}_{x_i}[k_{i}(x_{i},\cdot)] }[/math]
respectively. Both terms are equal if and only if all random variables are independent. The squared difference between both is given by
[math]\displaystyle{ \mathbb{E}_{x_{i=1}^T,{x'}_{i=1}^{T}}[\prod_{i=1}^{T}k_{i}(x_{i},x_{i}^{'})]+\prod_{i=1}^{T}\mathbb{E}_{x_{i},x_{i}^{'}}[k_{i}(x_{i},x_{i}^{'})]-2\mathbb{E}_{x_{i=1}^{T}}[\prod_{i=1}^{T}\mathbb{E}_{x_{i}^{'}}[k(x_{i},x_{i}^{'})]] }[/math]
which we refer to as multiway HSIC.
Denote by [math]\displaystyle{ K_{i} }[/math] the kernel matrix obtained from the kernel [math]\displaystyle{ k_{i} }[/math] on the set of observations [math]\displaystyle{ X_{i}:=\{x_{i1},...,x_{im}\} }[/math], the empirical estimate is given by
[math]\displaystyle{ HSIC[X_{1},...,X_{T}]:=1_{m}^{T}(\bigodot_{i=1}^{T}K_{i})1_{m}+\prod_{i=1}^{T}1_{m}^{T}K_{i}1_{m}-2\cdot1_{m}^{T}(\bigodot_{i=1}^{T}K_{i}1_{m}) }[/math]
where [math]\displaystyle{ \bigodot_{t=1}^{T}\ast }[/math] denotes elementwise product of its arguments. To apply this to sorting we only need to define T permutation matrices [math]\displaystyle{ \pi_{i} \in \Pi_{m} }[/math] and replace the kernel matrices [math]\displaystyle{ K_{i} }[/math] by [math]\displaystyle{ \pi_{i}^{T}K_{i}\pi_{i} }[/math].
Optimization
Convex Objective and Convex Domain
Define [math]\displaystyle{ \pi }[/math] as a doubly stochastic matrix,
[math]\displaystyle{ P_{m}:=\{\pi \in \mathbb{R}^{m \times m} where \pi_{ij}\geqslant 0 and \sum_{i}\pi_{ij}=1 and \sum_{j}\pi_{ij}=1\} }[/math]
The objective function [math]\displaystyle{ tr K \pi^{T}L\pi }[/math] is convex in [math]\displaystyle{ \pi }[/math] .
Convex-Concave Procedure
Compute successive linear lower bounds and maximize [math]\displaystyle{ \pi_{i+1}\leftarrow argmax_{\pi \in P_{m}}[tr \bar{K} \pi^{T}\bar{L} \pi_{i}] }[/math]
This will converge to a local maximum.
Initialization is done via sorted principal eigenvector.
An tentative explanation for this part
Basically, I think the optimizing method used in this paper does not apply the Concave Convex Procedure exactly. As I said on Tuesday, I think it just "borrowed" the idea form the Concave Convex Procedure since there is no concave part in this question.
Accoding to the paper, the Concave Convex Procedure works as follows: [math]\displaystyle{ f(x)=g(x)-h(x) }[/math], where [math]\displaystyle{ g }[/math] is convex and [math]\displaystyle{ h }[/math] is concave, a lower bound can be found by
[math]\displaystyle{ f(x) \ge g(x_{0}) + \langle x-x_{0},\partial_{x}g(x_{0}) \rangle -h(x) }[/math]
For the objecitve function in the kernelized sorting method, it can be written in the following format
[math]\displaystyle{ f(\pi)=g(\pi)= tr \bar{K} \pi^{T}\bar{L}\pi }[/math]
Currently, suppose we have [math]\displaystyle{ \pi_{0} }[/math] and [math]\displaystyle{ g(\pi_{0}) = tr\bar{K} \pi_{0}^{T}\bar{L}\pi_{0} }[/math].
We know that [math]\displaystyle{ \bigtriangledown_{A} tr ABA^{T}C=CAB+C^{T}AB^{T} }[/math].
So [math]\displaystyle{ \bigtriangledown_{\pi} tr \bar K \pi^{T} \bar L \pi=\bigtriangledown_{\pi} tr \pi \bar K \pi^{T} \bar L = \bar L \pi \bar K+\bar L^{T} \pi \bar K^{T} }[/math]. Since [math]\displaystyle{ \bar K }[/math] and [math]\displaystyle{ \bar L }[/math] are symmetric matrix, we get
[math]\displaystyle{ \bigtriangledown_{\pi} tr \pi \bar K \pi^{T} \bar L = 2\bar L \pi \bar K }[/math].
Hence, we get [math]\displaystyle{ \langle \pi - \pi_{0}, \bigtriangledown_{\pi} tr \pi_{0} \bar K \pi_{0}^{T} \bar L\rangle =\langle \pi - \pi_{0}, 2\bar L \pi_{0} \bar K\rangle =2tr (\pi - \pi_{0})^{T}\bar L \pi_{0} \bar K =2tr \bar K(\pi - \pi_{0})^{T}\bar L \pi_{0} }[/math]
In this case, we can get [math]\displaystyle{ f(\pi)\ge tr \bar{K} \pi_{0}^{T}\bar{L}\pi_{0} + 2tr \bar K(\pi - \pi_{0})^{T}\bar L \pi_{0} }[/math]
We can drop the coefficient [math]\displaystyle{ 2 }[/math] since we just want to maximize this lower bound, so we get [math]\displaystyle{ f(\pi)\ge tr \bar{K} \pi_{0}^{T}\bar{L}\pi_{0} + tr \bar K(\pi - \pi_{0})^{T}\bar L \pi_{0} }[/math]
Hence, we get [math]\displaystyle{ f(\pi)\ge tr \bar{K} \pi^{T}\bar{L}\pi_{0} }[/math]
So this is the lower bound we want to update repeatedly.
Actually, I think if the Kernel matrices [math]\displaystyle{ K }[/math] and [math]\displaystyle{ L }[/math] are well defined and computed already, there is no too much parameters in this optimization problem, which means some stochastic gradient descent method can be applied. In fact, I think this question is easier than the assignment problem based the same argument about the complexity of parameters. Hence, interpreting it as a TSP problem and for example, using Simulated Annealing algorithm, is an acceptable method.
Application
Summary
We generalize sorting by maximizing dependency between matched pairs of observations via HSIC.
Applications of our proposed sorting algorithm range from data visualization to image, data attribute and multilingual document matching.