measuring Statistical Dependence with Hilbert-Schmidt Norm: Difference between revisions
No edit summary |
|||
Line 14: | Line 14: | ||
===Tensor Product Operator=== | ===Tensor Product Operator=== | ||
We may employ any <math>f\in \mathcal{F}</math> and <math>g\in \mathcal{G}</math> to define a tensor product operator <math>f\otimes g:\mathcal{G}\rightarrow\mathcal{F}</math> as follows:<br> | |||
<math>(f\otimes g)h:=f\langle g,h\rangle_{\mathcal{G}} \quad</math> for all <math>h\in\mathcal{G}</math><br> | |||
Using the definition of HS norm introduced [[Hilbert-Schmidt Norm|above]], we can simply show the norm of <math>f\otimes g</math> equals<br> | |||
<math>\|f\otimes g\|^2_{HS}=\|f\|^2_{\mathcal{F}}\, \|g\|^2_{\mathcal{G}}</math> | |||
==Cross-Covariance Operator== | ==Cross-Covariance Operator== | ||
===Mean=== | ===Mean=== |
Revision as of 14:44, 24 June 2009
"Hilbert-Schmist Norm of the Cross-Covariance operator" is proposed as an independence criterion in reproducing kernel Hilbert spaces (RKHSs). The measure is refereed to as Hilbert-Schmidt Independence Criterion, or HSIC. An empirical estimate of this measure is introduced which may be well used in many practical application such as independent Component Analysis (ICA), Maximum Variance Unfolding (MVU), feature extraction, feature selection, ... .
RKHS Theory
Let [math]\displaystyle{ \mathcal{F} }[/math] be a Hilbert space from [math]\displaystyle{ \mathcal{X} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. We assume [math]\displaystyle{ \mathcal{F} }[/math] is a Reproducing Kernel Hilbert Space,i.e., for all [math]\displaystyle{ x\in \mathcal{X} }[/math], the corresponding Dirac evaluation operator [math]\displaystyle{ \delta_x:\mathcal{F} \rightarrow \mathbb{R} }[/math] is a bounded (or equivalently continuous) linear functional. We denote the kernel of this operator by [math]\displaystyle{ k(x,x')=\langle \phi(x)\phi(x') \rangle_{\mathcal{F}} }[/math] where [math]\displaystyle{ k:\mathcal{X}\times \mathcal{X}\rightarrow \mathbb{R} }[/math] is a positive definite function and [math]\displaystyle{ \phi }[/math] is the feature map of [math]\displaystyle{ \mathcal{F} }[/math]. Similarly, we consider another RKHS named [math]\displaystyle{ \mathcal{G} }[/math] with Domain [math]\displaystyle{ \mathcal{Y} }[/math], kernel [math]\displaystyle{ l(\cdot,\cdot) }[/math] and feature map [math]\displaystyle{ \psi }[/math]. We assume both [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math] are separable, i.e., they have a complete orthogonal bases.
Hilbert-Schmidt Norm
For a linear operator [math]\displaystyle{ C:\mathcal{G}\rightarrow \mathcal{F} }[/math], provided the sum converges, the Hilbert-Schmidt (HS) norm is defined as:
[math]\displaystyle{ \|C\|^2_{HS}:=\sum_{i,j}\langle Cv_i,u_j \rangle^2_{\mathcal{F}} }[/math]
where [math]\displaystyle{ u_j }[/math] and [math]\displaystyle{ v_i }[/math] are orthogonal bases of [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math], respectively. It is easy to see that the Frobenius norm on matrices may be considered a spacial case of this norm.
Hilbert-Schmidt Operator
A Hilbert-Schmidt Operator is a linear operator for which the Hilbert-Schmidt norm (introduced above) exists.
Tensor Product Operator
We may employ any [math]\displaystyle{ f\in \mathcal{F} }[/math] and [math]\displaystyle{ g\in \mathcal{G} }[/math] to define a tensor product operator [math]\displaystyle{ f\otimes g:\mathcal{G}\rightarrow\mathcal{F} }[/math] as follows:
[math]\displaystyle{ (f\otimes g)h:=f\langle g,h\rangle_{\mathcal{G}} \quad }[/math] for all [math]\displaystyle{ h\in\mathcal{G} }[/math]
Using the definition of HS norm introduced above, we can simply show the norm of [math]\displaystyle{ f\otimes g }[/math] equals
[math]\displaystyle{ \|f\otimes g\|^2_{HS}=\|f\|^2_{\mathcal{F}}\, \|g\|^2_{\mathcal{G}} }[/math]