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Visual Odometry (VO) is a computer vision technique for
estimating an object’s position and orientation from camera
images.
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Application:
Mars Exploration

Rovers / Robotic

Navigation

Figure 5: Views of Opportunity’s 19 meter drive from Sol 188 through Sol
191. The inside path shows the correct, Visual Odometry updated location.
The outside path shows how its path would have been estimated from the
IMU and wheel encoders alone. Each cell represents one square meter.
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Application: Autonomous Vehicles Localization
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Related Work

Monocular v.s. Stereo

« Geometry based v.s. Learning based

1.

Sparse feature based methods
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Fig. 2. (a) Matching the four known features of the initialization target on
the first frame of tracking. The large circular search regions reflect the
high uncertainty assigned to the starting camera position estimate.
(b) Visualization of the model for “smooth® motion: At each camera
position, we predict a most likely path together with alternatives with small
deviations.

(b)

Fig. 3. (a) Frames and vectors in camera and feature geometry. (b) Active
search for features in the raw images from the wide-angle camera.
Ellipses show the feature search regions derived from the uncertainty in
the relative positions of camera and features and only these regions are
searched.
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Related Work

2. Direct methods

Figure 3. Incremental cost volume construction: we show the current inverse depth map extracted as the current minimum cost for each
pixel row dyy"™ = arg min, C(u.d) as 2, 10 and 30 overlapping images are used in the data term (left). Also shown is the regularised
solution that we solve to provide each keyframe inverse depth map (4th from left). In comparison to the nearly 300 x 10° points estimated
in our keyframe, we show the = 1000 point features used in the same frame for localisation in PTAM ([6]). Estimating camera pose from
such a fully dense model enables tracking robustness during rapid camera motion.

Image source:
R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in
real-time,” in Proceedings of IEEE International Conference on Computer Vision (ICCV). IEEE, 2011,

3. Semi-direct methods
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Related Work

Challenges of Geometry based approach

Outliers

Image Noises

Inconsistent Lighting

Feature Engineering - domain knowledge
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Figure 1. Architectures of the conventional geometry-based monocular VO method.
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Related Work

Learning based approach

o Learn motion model / optical flow from data
o Trained using KNN, Gaussian Process, and SVM

Challenges

o Inefficient to handle highly non-linear and high-dimensional inputs,
e.g., RGB images
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» Deep Learning!!

» An novel end-to-end Visual Odometry framework using
RCNN

» Architecture
1. Monocular video input (pre-processes by subtracting the mean
RGB values)
Stacked images to form tensors
CNN to learn feature representation
RNN to model image sequence relations
Output pose (position, orientation) estimation at each time step
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END-TO-END VISUAL ODOMETRY WITH RCNN
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Fig. 2. Architecture of the proposed RCNN based monocular VO system. The dimensions of the tensors shown here are given as an example based on
the image size of the KITTI dataset. The CNN ones should vary according to the size of the input image. Camera image credit: KITTI dataset.
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END-TO-END VISUAL ODOMETRY WITH RCNN
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END-TO-END VISUAL ODOMETRY WITH RCNN

TABLE 1
CONFIGURATION OF THE CNN

Convolutional Layers

Receptive Number

Layer & 3 Padding Stride 2
B Field Size & of Channels

1 1 1 1 Convl T IT 3 2 64

= Decreasing Receptive Field Size s o : 2 o
Conv3 5x5 2 2 256

to capture small features - : : s
Conv4 3x3 | 2 512

. . Conv4_1 33 1 1 512

» Increasing Output Channels (filters) . i : ; cis
t 1 f t Conv3_1 3x3 1 1 512

O Iearn more reatures Cové  3x3 ! 2 1024

= ReLU activation layer following eack

layer except number Conv6

= Convolutional features passed to RNN for sequential modelling
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END-TO-END VISUAL ODOMETRY WITH RCNN

Recurrence Layers Intuition

= Estimating pose of current image frame can benefit from 1nformat10n

encapsulated in previous frames ® ®
= | A ! A (A %’T
= Long Short-Term Memory (LSTM) Layers ®

An unroll ral network.
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The repeating module in an LSTM contains four interacting layers.
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END-TO-END VISUAL ODOMETRY WITH RCNN

Long Short-Term Memory (LSTM) Layers

= Two LSTM Layers, each with 1000 hidden states

> »
Ct
input input
modulation | gate
gate
Oy ht
e
output gate

«W—}—ll

Fig. 3. Folded and unfolded LSTMs and internal structure of its unit. ® and
¢ denote element-wise product and addition of two vectors, respectively.
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END-TO-END VISUAL ODOMETRY WITH RCNN

Training and Optimization

= Conditional Probability of poses Yt given a sequence of monocular RGB
images

p(YtIXt) :p()'l)'th1.xt) (3)

= Finding optimal parameters for the RCNN network representing p

0" = argmax p(Y¢|X¢; 0) (4)
6
= Mean Square Error (MSE) loss function

N ¢
: 1 = . e )
g— 31'5%’(1911111 T E E | Pp.; - l)kl Z: T HHS:'I; — *Pz..-| :: (3)
T =1 k=1
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= Empirical comparison with open-source VO library of LIBVISO2
(monocular and stereo version)

= KITTI VO/SLAM benchmark - 22 image sequences, 11 of which are
labeled with ground truths

= Challenging dataset - low frame rate (10 fps), urban areas with many
dynamic objects, and high driving speed up to 9o km/h

= Implemented on Theano DL framework; trained by using a NVIDIA
Tesla K40 GPU; Adagrad optimiser to train network upto 200 epochs
using learning rate 0.001, dropout, and early stop techniques

AGE 15 %’ WATERLOO



Experiment 1:

= Quantitatively Analysis of pose estimation accuracy
= Performed using only labeled image sequence; 4 of which for training

= Trajectories are segmented to different lengths to generate more data
for training, producing 7410 samples in total.
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Experiment 1 results:

= RCNN outperforms VISO2_M
= Not as accurate as VISO2_ S
TABLE 11
RESULTS ON TESTING SEQUENCES.
Se DeepVO VISO2_M VISO2_S
4 tml(%-) Trel(o) trel(%') 7'rel(0) trel(%) 'rrel(o)
03 8.49 6.89 8.47 8.82 3.21 3.25
04 7.19 6.97 4.69 4.49 2.12 2.12
05 2.62 3.61 19.22 17.58 1.53 1.60
06 5.42 5.82 7.30 6.14 1.48 1.58
07 3.91 4.60 23.61 29.11 1.85 1.91
10 8.11 8.83 41.56 32.99 1.17 1.30
mean | 5.96 6.12 17.48 16.52 1.89 1.96

e tr: average translational RMSE drift (%) on length of 100m-800m.

e 7T average rotational RMSE drift (°/100m) on length of 100m-800m.

e The DeepVO model used is trained on Sequence 00, 02, 08 and 09. Its
performance is expected to improve when it is trained on more data.
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Fig. 6. Trajectories of VO testing results on Sequence 04, 05, 07 and 10.
The DeepVO model used is trained on Sequence 00, 02, 08 and 09.
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Experiment 2:
= Generalizability test in totally new environment

= Trained on labeled image sequence 00-10, tested on unlabeled
sequence 11-21
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Experiment 2 results:
= RCNN outperforms VISO2_M and performs similar to VISO2_S
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Fig. 8. Trajectories of VO results on the testing Sequence 11, 12, 15, 17, 18 and 19 of the KITTI VO benchmark (no ground truth is available for these
testing sequences). The DeepVO model used is trained on the whole training dataset of the KITTI VO benchmark.
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Overfitting affects:
= Well-fitted model is key to
ensuring good generalisation

and reliable pose estimation

Loss
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(e) Tested VO: Overfitting.
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Fig. 4. Training losses and VO results of two models. Figures in the left and
right columns are about the over-fitted and well-fitted models, respectively.

PAGE 20 (a)-(b) Training and validation losses. (c)-(d) Estimated VO on training data

(Sequence 00). (e)-(f) Estimated VO on testing data (Sequence 05).



= The proposed deep learning based end-to-end monocular VO algorithm
using RCNN is able to achieve simultaneous features extraction and
sequential modelling

= The model can produce accurate VO and generalizes well in new
environment

= It requires no manual feature engineering or calibration

= It can be a viable complement to conventional geometry based VO
approaches
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= Existing stereo VO geometry approaches outperforms the proposed
model; why not just use stereo VO?

= Lacking details about model design, e.g. rationale for image sequence
pre-processing and hyper-parameters

= Lacking qualitative comparison of algorithms, such as engineering
time, training time, hardware and computation requirements

= Future work and real-time visual odometry?
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