Published at NIPS 2017

### Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin

Ritambhara Singh, Jack Lanchantin, Arshdeep Sekhon, Yanjun Qi Department of Computer Science University of Virginia

> Presented by Johra Muhammad Moosa Bioinformatics Lab

## What is Gene Regulation?

#### Process of controlling Gene Expression

## What is Gene Expression?

#### Abundance of a gene or a protein in a cell

## **DNA to Protein**

- DNA: coded message
- Gene: part (from TSS to TTS) of the message to be decoded
- Ribosome decoder
- Protein decoded output



#### Image source: https://www.researchgate.net/publication/318420329\_Health\_technology\_assessment\_of \_next-generation\_seguencing/figures?lo=1

## **Gene Expression**

- Each cell has different functionality
  - needs different proteins
  - gene expression is different for each cell
- Detect abnormal cells

## **Histone & Chromatin**

- 1. **Histones** lock and compact DNA around it
- Form a structure called
   Chromatin
- 3. To protect DNA during cell division and replication



## **Histone Code Hypothesis**

- Histone Modification Marks

   chemically modified
- 2. Genes: accessible or restricted
- 3. Neighboring region
  - a. Gene expression affected



- a. unlike genetic mutation
- b. this can help develop epigenetic drugs



## **Objective**

• Biologists now can measure <u>gene expressions</u> and <u>HM mark signals</u> easily

• For each <u>cell type</u>, we want to find the <u>important HM marks</u> and how they <u>interact</u> to <u>control gene expression</u>

How HM MARKS control GENE REGULATION in a cell

## Histone Modification Signal

• Might appear anywhere in the gene region

- Gene region
  - 10k base pairs (bp)
  - Centered at TSS



9

## Histone Modification Signal

 HM signals can span across multiple neighboring bins



## **Data Modelling/ Factors**

- Large number of histone modification marks
- The five standard histones can be modified simultaneously
- Different sites/ locations
- Different chemical modifications

Learn dependencies among different marks

## Input data

REMC database: 56 different cell types

• Histone modification signals covering the **gene region** 

Feature vector for each mark: signals surrounding a gene's TSS position

- Flanking region: ± 5k bp from the TSS, total 10k bp
- Divide into 100 bins, with bins of 100 bp length each

Five (5) core histone modifications

• Uniformly profiled across all cell types

## **Core Histone Marks**

- 1. Five core histone marks
- 2. Uniformly profiled in the REMC dataset

| Histone Mark | Associated with         | Functional category | Тад                 |           |
|--------------|-------------------------|---------------------|---------------------|-----------|
| H3K4me3      | Promoter regions        | Promoter mark       | H <sub>prom</sub>   |           |
| H3k4me1      | Enhancer regions        | Distal mark         | H <sub>enhc</sub>   | Express   |
| H3K36me3     | Transcribed regions     | Structural mark     | H <sub>struct</sub> |           |
| H3K9me3      | Heterochromatin regions | Repressor mark      | H <sub>reprA</sub>  | - Supress |
| H2K27me3     | Polycomb repression     | Repressor mark      | H <sub>reprB</sub>  |           |

## **Input Format**

- Columns: bins, T = 100 bins
- Rows: HMs, M = 5
- For each gene,
  - Input, **X**: 5 × 100
  - Label, y, binary:
    - Discretized
    - High: +1
    - Low: -1



Gene A

## **Input Format**

- N: number of genes
- For the n<sup>th</sup> gene, the sample is (X<sup>n</sup>, y<sup>n</sup>)



## **Dependencies**



## **Model Formulation**

• RNN: to capture the <u>spatial dependencies</u>

- **One** LSTM for the five HMs
  - Combinatorial features: To model how they interact
- One LSTM for each HMs
  - Local features: To model the <u>spatial dependencies</u> among the bins

## **Model Formulation**

• RNN: to capture the <u>spatial dependencies</u>

- Two levels of soft attention
  - 1. Attends the important regions of a HM mark
  - 2. Attends the important HM marks

## **Model Objective**

For each gene,

- Local feature
  - Attend most relevant bin positions of an HM mark
- Combinatorial features
  - Recognize and attend the relevant HM marks

## **Model Formulation**

- 1. Bin-level LSTM encoder
  - a. For each HM mark
- 2. Bin-level Attention
  - a. For each HM mark
- 3. HM-level LSTM encoder
  - a. encoding all HM marks
- 4. HM-level Attention
  - a. One over all the HM marks
- 5. Final classification module



## **Bin-Level Encoder** One for each HM

## **Bin-Level Encoder**

t = 1 to 100 & j = 1 to 5

5 bin-level encoder

Bidirectional LSTM, for each HM, **Backward**: from  $\mathbf{x}_{i}^{\mathsf{T}}$  to  $\mathbf{x}_{i}^{\mathsf{T}}$   $\overrightarrow{\mathbf{h}}_{t}^{j} = \overrightarrow{LSTM}^{j}(x_{t}^{j})^{\mathsf{T}}$ Final embedding vector **t**=100  $\vdots$  t=1t=2 $\mathbf{h}_{t}^{j} = [\vec{\mathbf{h}_{t}^{j}}, \vec{\mathbf{h}_{t}^{j}}]$ concat →t=100<sup>1</sup> **Forward:** from  $x_i^1$  to  $x_i^T$   $\overleftarrow{\mathbf{h}}_t^j = \overleftarrow{LSTM}^j(x_t^j)$ .\_\_

## **Bin-Level Encoder**

t = 1 to 100 & j = 1 to 5

5 bin-level encoder

Bidirectional LSTM<sub>i</sub> for each HM<sub>i</sub>

for each HMs



## Bin-Level $\alpha$ -Attention One for each HM

## Bin-Level $\alpha$ -Attention

t = 1 to 100 & j = 1 to 5

5 bin-level attention

Finds the <u>bins</u> important for the encoding of j<sup>th</sup> <u>HM mark</u>



## Bin-Level $\alpha$ -Attention



#### Intuition: W<sub>b</sub> learns the positional relevance



#### Representation of the entire j<sup>th</sup> HM mark, for this gene X

## $\mathbf{m}^j = \sum_{t=1}^T \alpha_t^j \times \mathbf{h}_t^j$

## HM-Level Encoder One to encode all HMs

### **HM-Level Encoder**

**Bidirectional LSTM** 

On imagined sequence of HMs

Input: m<sup>j</sup> representation of j<sup>th</sup> HM

Output: of size d',

$$\mathbf{s}^{j} = [\overrightarrow{LSTM}_{s}^{j}(\mathbf{m}^{j}), \overleftarrow{LSTM}_{s}(\mathbf{m}^{j})]$$



Bin-Level Encoding, m<sup>j</sup>

Dependency among the bins for j<sup>th</sup> HM

HM-Level Encoding, s<sup>j</sup>

Dependency between the j<sup>th</sup> HM and the other HMs

## HM-Level *B*-Attention One to attend the HMs

## HM-Level $\beta$ -Attention

Finds the important <u>HM marks</u> for classifying <u>gene expression</u>



## HM-Level $\beta$ -Attention

Finds the important <u>HM markers</u> for classifying <u>gene expression</u>

Learnable weights:  $\beta^{j}$  for  $j \in \{1, ..., M\}$ 

Represents the relative importance of HM<sup>j</sup>

HM-level attention weight, 
$$\beta^j = \frac{exp(\mathbf{W}_s \mathbf{s}^j)}{\sum_{i=1}^{M} exp(\mathbf{W}_s \mathbf{s}^i)}$$

## **Gene Region Encoding**

Entire "**gene region**", for the current sample **X**, encoded into a hidden representation,

$$\mathbf{v} = \sum_{j=1}^{M} \beta^j \mathbf{s}^j$$

Weighted sum of the embeddings from all HM marks

Summarizes the information of all HMs to represent the entire gene region

## **Classification of Gene Expression**

Predict the gene expression from the encoding vector,  ${\bf v}$ 

$$f(\mathbf{v}) = \operatorname{softmax}(\mathbf{W}_c \mathbf{v} + b_c)$$

Learnable parameters: W<sub>c</sub> and b<sub>c</sub>

Loss function: argmin(-log(likelihood))

## **Model Hyperparameters**

| Description                   | Hyperparameter | Size/Value |
|-------------------------------|----------------|------------|
| Bin level embedding size      | d              | 32         |
| HM level embedding size       | d'             | 16         |
| Bin level context vector size | Wb             | 64         |
| HM level context vector size  | Ws             | 32         |

## **Experimental Results**

- Performance evaluation using AUC scores
  - DeepChrome: CNN
  - LSTM: without attention
  - Five variants of AttentiveChrome
    - CNN-Attn CNN- $\alpha$ ,  $\beta$  LSTM- $\alpha$
    - LSTM-Attn LSTM- $\alpha$ ,  $\beta$  (AttentiveChrome)

## **AUC Score**

Table 2: AUC score performances for different variations of AttentiveChrome and baselines

| Baselines                                                  |                                             |                                      | AttentiveChrome Variations           |                                                             |                                             |                                                    |                                      |
|------------------------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------------|
| Model                                                      | DeepChrome<br>(CNN)<br>[29]                 | LSTM                                 | CNN-<br>Attn                         | $\begin{array}{c} \text{CNN-} \\ \alpha, \beta \end{array}$ | LSTM-<br>Attn                               | LSTM-<br>$\alpha$                                  | LSTM- $\alpha, \beta$                |
| Mean<br>Median<br>Max<br>Min                               | 0.8008<br>0.8009<br><b>0.9225</b><br>0.6854 | 0.8052<br>0.8036<br>0.9185<br>0.7073 | 0.7622<br>0.7617<br>0.8707<br>0.6469 | 0.7936<br>0.7914<br>0.9059<br>0.7001                        | 0.8100<br>0.8118<br>0.9155<br><b>0.7237</b> | <b>0.8133</b><br><b>0.8143</b><br>0.9218<br>0.7250 | 0.8115<br>0.8123<br>0.9177<br>0.7215 |
| Improvement over DeepChrome [29]<br>(out of 56 cell types) |                                             | 36                                   | 0                                    | 16                                                          | 49                                          | 50                                                 | 49                                   |

## **Experimental Results**

- Evaluation of Interpretation
  - Correlation of HM <u>β-Attention Weight</u>
  - Visualization of bin  $\alpha$ -<u>Attention Weights</u> for each HM for cell GM12878
  - Attention Weight of bins with  $H_{active}$
  - Visualization of HM-level Attention Weight for Gene PAX5

## **Interpretability Evaluation**

- A new HM signal H<sub>active</sub> H3K27ac from REMC database
  - Active when gene is known
  - Not included in training
- For all the active genes:
  - average read counts of H<sub>active</sub> across all 100 bins
- For all predicted ON genes:
  - Importance weights calculated by all visualization methods for our active input mark, H<sub>prom</sub>



## **Pearson Correlation**

Between  $\rm H_{active}$  and  $\rm H_{prom}$ 

|                                       | Stem cell | Blood cell | Leukemia cel |
|---------------------------------------|-----------|------------|--------------|
| Viz. Methods                          | H1-hESC   | GM12878    | K562         |
| $\alpha$ Map (LSTM- $\alpha$ )        | 0.8523    | 0.8827     | 0.9147       |
| $\alpha$ Map (LSTM- $\alpha, \beta$ ) | 0.8995    | 0.8456     | 0.9027       |
| Class-based Optimization (CNN)        | 0.0562    | 0.1741     | 0.1116       |
| Saliency Map (CNN)                    | 0.1822    | -0.1421    | 0.2238       |

## Visualization of $\alpha$ -attention

For GM12878 (blood cell)

Average  $\alpha$  weights for all the

predicted genes (ON-OFF)



## **β** Heatmap

Advantage of AttentiveChrome over LSTM- $\!\alpha$ 

Gene PAX5: when stem cell converts to blood

Stem cell: OFF

Blood cell: ON

Heatmaps visualizing the HM-level weights



## **Previous Works**

- 1. Linear regression
- 2. Support vector machines
- 3. Random forests
- 4. DeepChrome (CNN)
  - a. automatically learns

combinatorial interactions



Multiple models

## Requires additional feature analysis

| Computational Study          | Unified      | Non-<br>linear | Bin-Info     | Representat      | Representation Learning |              | Feature<br>Inter. | Interpretable |
|------------------------------|--------------|----------------|--------------|------------------|-------------------------|--------------|-------------------|---------------|
|                              |              |                |              | Neighbor<br>Bins | Whole<br>Region         |              |                   |               |
| Linear Regression ([14])     | ×            | ×              | ×            | ×                | $\checkmark$            | $\checkmark$ | ×                 | $\checkmark$  |
| Support Vector Machine ([7]) | ×            | $\checkmark$   | Bin-specific | ×                | $\checkmark$            | $\checkmark$ | $\checkmark$      | ×             |
| Random Forest ([10])         | ×            | $\checkmark$   | Best-bin     | ×                | $\checkmark$            | $\checkmark$ | ×                 | ×             |
| Rule Learning ([12])         | ×            | $\checkmark$   | ×            | ×                | $\checkmark$            | ×            | $\checkmark$      | $\checkmark$  |
| DeepChrome-CNN [29]          | $\checkmark$ | $\checkmark$   | Automatic    | $\checkmark$     | $\checkmark$            | $\checkmark$ | $\checkmark$      | ×             |
| AttentiveChrome              | $\checkmark$ | $\checkmark$   | Automatic    | $\checkmark$     | $\checkmark$            | $\checkmark$ | $\checkmark$      | $\checkmark$  |



One model each bin

Select best bins only





**Classification + Visualization** 

Better prediction

More accurate than the state of the art

**Better interpretation** 

Validation of interpretation score

With a new mark signal (which is not included in the modeling)

First attention-based deep learning method

Molecular biology data modeling



<u>Pros</u>

Direction of how to incorporate deep models with biological dataset

#### <u>Cons</u>

Numbers do not suggest better performance

No specific HM ordering: why LSTM in HM-level encoding?

Functional aspects of models are <u>defined</u> and <u>evaluated</u> by the authors

Extension of DeepChrome: however no comparative discussion provided

## **Future Direction**

Try Regression!

# Questions?

## **Thank You**

