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Context
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▪ 4 main types of image analysis pertaining 
to objects

▪ This paper focuses on instance 
segmentation

▪ To train a model, we need to generate ground 
truth (GT) data by annotation



Motivation

▪ Cityscape dataset contains 3500 images

▪ 60,000 object instances

▪ Will take about 500+ hours to annotate

▪ The main goal is to reduce time spent
to annotate images

▪ This paper presents a semi-automaticmethod 
for annotation
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Related Work

▪ Grabcut

▪ Superpixel approach
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Polygon RNN – Why Polygons?
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▪ It is a clustered representation of pixels

▪ Implies: a sparse representation

▪ Follows what humans do to represent or annotate 
an object

▪ Easy to accommodate changes, if the object is not 
enclosed properly



Model Overview
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VGG16 Architecture
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Model Overview
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ConvLSTM

▪ Takes as input 𝑥𝑡 from the CNN

▪ Computes a hidden state ℎ𝑡 given:

▪ 𝑖, 𝑓, 𝑜 denote the input, forget, and output 
gate,

▪ 𝑐𝑡 is the cell state at time step t,

▪ σ denotes the sigmoid function,

▪ ⨀ indicates an element-wise product, 

▪ ∗ denotes a convolution,

▪ 𝑊ℎ denotes the hidden-to-state convolution 
kernel and 𝑊𝑥 the input-to-state convolution 
kernel.
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▪ Outputs one-hot representation of the 
predicted vertex



Model Training

▪ Cityscape Dataset

▪ 2975 training, 500 validation, and 1525 test images

▪ KITTI Dataset

▪ To measure generalization capability

▪ Implementation details:

▪ Cross-entropy loss function

▪ Adam optimizer (batch size = 8; decaying learning rate = 1−4; decays by a factor of 10 after 10 
epochs)

▪ Training time: 1 full day on a NVIDIA Titan-X GPU

▪ Data Augmentation: Flipping images, bounding box expansion, random starting vertex
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Importance of Human Annotator
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VGG16



Evaluation and Baseline

▪ Evaluation:

▪ IoU

▪ Number of Clicks

▪ To evaluate speed up factor when human annotator is involved

▪ Checkerboard distance threshold: 𝑇ϵ [1,2,3,4] used to measure # of clicks

▪ Baseline:

▪ SharpMask – 50 layer ResNet

▪ DeepMask – SharpMask + additional CNN

▪ Dilation10 – Purely convolutional operations

▪ SquareBox – Entire bounding box is labeled as an instance
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Evaluation - IoU
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▪ Superior performance in 6/8 categories without human corrections

▪ IoU compared to SharpMask:

▪ Car – 12%

▪ Person – 7%

▪ Rider – 6%



Evaluation - # of Clicks

▪ Importance of human annotator:

▪ Under 5 clicks, speed up factor is 7 times 
compared to complete manual annotation

▪ Applied to KITTI dataset:

▪ Still able to achieve similar IoU in about the same 
number of clicks
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Speed-Up Factor

KITTI Dataset



Qualitative Results
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Critique 

▪ Significant improvement in annotation time

▪ Speed-up factor of 7

▪ Cut down costs

▪ Human annotation input helps increase IoU

▪ Approach works in other domains

▪ Medical applications

▪ Model uses VGG16 instead of ResNet, but still quite efficient

▪ Baseline methods have an upper hand for larger objects: output resolution of baselines is 
higher

▪ Future work: remain insensitive to size of object, elimination of CNN for first vertex
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Questions
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